基于细观力学方法的混杂纤维复合材料抗拉强度预测模型

秦飞飞, 盛冬发

PDF(2299 KB)
PDF(2299 KB)
塑料科技 ›› 2024, Vol. 52 ›› Issue (07) : 12-17. DOI: 10.15925/j.cnki.issn1005-3360.2024.07.003
理论与研究

基于细观力学方法的混杂纤维复合材料抗拉强度预测模型

作者信息 +

Predictive Model of Tensile Strength for Hybrid Fiber Composites Based on Micromechanics Method

Author information +
History +

摘要

基于含夹杂的弹性体内部应变场积分方程,推导了三相复合材料中夹杂的变形协调张量。与传统的Mori-Tanaka方法(M-T方法)相比,此变形协调张量从细观力学角度考虑了复合材料夹杂的分布特征和相互作用,得到了预测复合材料有效弹性性能的修正M-T法,再结合两步均匀化模型得到预测混杂纤维复合材料有效性能的方法。采用损伤力学理论,建立了混杂纤维复合材料拉伸强度的预测模型。采用该方法对文献中椰壳纤维/玻璃纤维增强酚醛树脂复合材料有效弹性性能和抗拉强度进行预测,并将预测结果与现有文献的试验值进行对比。结果表明:修正M-T方法较传统M-T具有更好的预测能力,其预测结果和试验值的误差基本保持在10.485%以内。用该方法定量分析了椰壳纤维和玻璃纤维掺量对混杂纤维复合材料有效弹性性能和拉伸强度的影响。混杂纤维复合材料有效弹性性能和抗拉强度随玻璃纤维的增大而增大。

Abstract

Based on the integral equations of internal strain fields in elastic bodies containing inclusions, the deformation coordination tensor of inclusions in three-phase composites is derived. Compared with the traditional Mori-Tanaka method (M-T method), the deformation coordination tensor takes into account the distribution characteristics and interactions of inclusions from the perspective of micromechanics, leading to a modified M-T method for predicting the effective elastic properties of composites. Combining with the two-step homogenization model, a method for predicting the effective performance of hybrid fiber composites is derived. Additionally, a prediction model for the tensile strength of hybrid fiber composites is established based on the damage mechanics theory. This method is used to predict the effective elastic properties and tensile strength for coconut husk fiber/glass fiber reinforced phenolic resin composites reported in the literature, and compared the predicted results with experimental data. The results show that the proposed modified M-T method has better predictive ability than the traditional M-T method, with the predicted results and experimental data differing by less than 10.485%. The method is used to quantitatively analyze the effect of the content of coconut husk fiber and glass fiber on the effective elastic properties and tensile strength of hybrid fiber composites. The results show that the effective elastic properties and tensile strength of hybrid fiber composites increase with the increase of glass fiber content.

关键词

细观力学方法 / 混杂纤维复合材料 / 有效弹性性能 / 抗拉强度

Key words

Micromechanics method / Hybrid fiber composites / Effective elastic properties / Tensile strength

中图分类号

TQ322

引用本文

导出引用
秦飞飞 , 盛冬发. 基于细观力学方法的混杂纤维复合材料抗拉强度预测模型. 塑料科技. 2024, 52(07): 12-17 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.07.003
QIN Fei-fei, SHENG Dong-fa. Predictive Model of Tensile Strength for Hybrid Fiber Composites Based on Micromechanics Method[J]. Plastics Science and Technology. 2024, 52(07): 12-17 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.07.003

参考文献

1
蒋莹.基于聚酰胺的改性碳纤维复合材料在体育器材中的制备和性能研究[J].粘接,2021,48(10):67-70, 102.
2
孔超,杜壮,唐舫成,等.聚烯烃热熔胶在连续纤维增强复合材料中的应用研究[J].粘接,2019,40(1):15-17.
3
刘佳琳,王玉敏,张国兴,等.SiC单纤维增强TC17复合材料横向拉伸性能研究[J].金属学报,2018,54(12):1809-1817.
4
徐志伟,余于仿,丁旭东,等.输电线路混杂纤维复合材料高温拉伸强度预测[J].现代塑料加工应用,2018,30(5):28-30.
5
SINHA A K, NARANG H K, BHATTACHARYA S. A fuzzy logic approach for modelling and prediction of mechanical properties of hybrid abaca-reinforced polymer composite[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, DOI: 10.1007/s40430-020-02377-4.
6
HUANG Z M, GUO W J, HUANG H B, et al.Tensile strength prediction of short fiber reinforced composites[J]. Materials, 2021, DOI: 10.3390/ma14112708.
7
VANEGAS-JARAMILLO J D, TURON A, COSTA J, et al. Analytical model for predicting the tensile strength of unidirectional composites based on the density of fiber breaks[J]. Composites Part B: Engineering, 2018, 141: 84-91.
8
JUNAEDI H, BAIG M, DAWOOD A, et al. Modeling analysis of the tensile strength of polypropylene base short carbon fiber reinforced composites[J]. Journal of Materials Research and Technology, 2021, 11: 1611-1621.
9
蒲桃红,马静月,李柱凯.椰壳纤维/玻璃纤维增强酚醛树脂复合材料的性能研究[J].塑料科技,2023,51(1):89-94.
10
严鹏,蒋持平.考虑周期微结构分布特征的Mori-Tanaka方法[J].复合材料学报,2007(4):178-184.
11
马寒松,胡更开.基于共焦点椭球构型的复合材料有效性质预测[J].复合材料学报,2003(6):92-97.
12
MORI T, TANAKA K. Average stress in matrix and average elastic energy of materials with misfitting inclusions[J]. Acta Metallurgica, 1973, 21: 571-576.
13
BENVENISTE Y. A new approach to the application of Mori-Tanaka's theory in composite materials[J]. Mechanics of Materials, 1987, 6(2): 147-157.
14
李涵,金学军,赵洪山.利用模型预测和优化多相各向异性TiB2增强钢复合材料的力学性能[J].机械工程材料,2017,41(1):90-95, 106.
15
TAYA M, CHOU T W. On two kinds of ellipsoidal inhomogeneities in an infinite elastic body: An application to a hybrid composite[J]. International Journal of Solids & Structures, 1981, 17(6): 553-563.
16
NEMAT-NASSER S, HORI M. Micromechanics: Overall properties of heterogeneous materials[M]. Amstendam: Elsevier Science Publishers B V, 1993.
17
ZHONG Z, MEGUID S A. On the eigenstrain problem of a spherical inclusion with an imperfectly bonded interface[J]. Journal of Applied Mechanics,1996, 63(4): 877-833.
18
陈惠发,萨里普.弹性与塑性力学[M].北京:中国建筑工业出版社,2005.
19
KHAN Z, YOUSIF B F, ISLAM M, ET AL. Fracture behaviour of bamboo fiber reinforced epoxy composites[J]. Composites Part B: Engineering, 2017, 116: 186-199.
20
FAZLALI B, LOMOV S, SWOLFS Y, et al. Fiber break model for unidirectional composites in tension-tension fatigue[C]//Ⅷ Conference on Mechanical Response of Composites, 2021.
21
MENG X H, LI J, CUI H, et al. Dynamic shear failure behavior of the interfaces in carbon fiber/ZnO nanowire/epoxy resin hierarchical composites[J]. Composites Science and Technology, 2022, DOI: 10.1016/j.compscitech.2022.109284.
22
MCCARTHY E D, SOUTIS C. Determination of interfacial shear strength in continuous fibre composites by multi-fibre fragmentation: A review[J]. Composites Part A: Applied Science and Manufacturing, 2019, 118: 281-292.
23
HARIZI W, CHAKI S, BOURSE G, et al. Damage mechanisms assessment of glass fiber-reinforced polymer (GFRP) composites using multivariable analysis methods applied to acoustic emission data[J]. Composite Structures, 2022, DOI: 10.1016/j.compstruct.2022.115470.
24
ABU-FARSAKH G A, ASFA A M. Macro-mechanical damage modeling of fibrous composite materials accounting for non-linear material behavior[J]. Composites Science and Technology, 2018,156: 287-295.

基金

国家自然科学基金(11862023)
云南省教育厅科学研究基金项目(2023Y0774)

评论

PDF(2299 KB)

Accesses

Citation

Detail

段落导航
相关文章

/