碳纳米管/结晶与非结晶性热塑性树脂界面形成分子动力学模拟

祁一信, 鞠苏

PDF(2078 KB)
PDF(2078 KB)
塑料科技 ›› 2024, Vol. 52 ›› Issue (07) : 1-6. DOI: 10.15925/j.cnki.issn1005-3360.2024.07.001
理论与研究

碳纳米管/结晶与非结晶性热塑性树脂界面形成分子动力学模拟

作者信息 +

Molecular Dynamics Simulation of the Interface Formation of Carbon Nanotube/Crystalline and Amorphous Thermoplastic Resin Composites

Author information +
History +

摘要

为了从微观结构角度研究单壁碳纳米管/结晶与非结晶性热塑性树脂复合材料界面形成过程中的结构、取向和能量变化的异同,架起微观结构与宏观性能之间的桥梁,采用分子动力学方法建立单壁碳纳米管/聚丙烯(SWCNT/PP)、单壁碳纳米管/聚乙烯(SWCNT/PE)结晶性和单壁碳纳米管/聚苯乙烯(SWCNT/PS)、单壁碳纳米管/聚甲基丙烯酸甲酯(SWCNT/PMMA)非结晶性热塑性树脂复合材料体系的分子模型,模拟界面形成过程,计算径向分布函数、界面能、总能量等。模拟结果表明:SWCNT/PS、SWCNT/PMMA界面形成过程主要是吸附。而SWCNT/PP、SWCNT/PE在界面形成过程中分为吸附和取向两部分;gr)值先在r上范围急剧减少,然后gr)值急剧增大,界面结晶,形成近程有序结构;2 000 ps时界面能为-620.1 kcal/mol和-791.7 kcal/mol,与SWCNT/PS、SWCNT/PMMA相比界面能更小,界面结合更好;总能量逐渐下降,2 000 ps时总能量是-1 654.9 kcal/mol和-1 211.2 kcal/mol,与SWCNT/PS、SWCNT/PMMA相比总能量更小,复合材料体系更稳定。

Abstract

In order to study the differences of structure, orientation and energy changes during the interfacial formation of single-walled carbon nanotube/crystalline and amorphous thermoplastic resin composites, built the bridge between microstructure and macroscopic properties, molecular models of single-walled carbon nanotubes/polypropylene (SWCNT/PP), single-walled carbon nanotubes/polyethylene (SWCNT/PE) crystalline, single-walled carbon nanotubes/polystyrene (SWCNT/PS), single-walled carbon nanotubes/polymethyl methacrylate(SWCNT/PMMA) amorphous thermoplastic resin composite systems were established by molecular dynamics simulation. The forming process of the interphase was simulated, radial distribution function, interface energy and total energy were calculated. The simulation results showed that the formation process of the interphase of the SWCNT/PS and SWCNT/PMMA were mainly adsorption. While the formation process of the interphase of the SWCNT/PP and SWCNT/PE were divided into adsorption and orientation. The g(r) of the SWCNT/PP and SWCNT/PE firstly decreased sharply in the range of r, then the value of the g(r) increased sharply, therefore the interphase crystallized, forming a short-range ordered structure. At 2 000 ps, the interfacial energy of the SWCNT/PP and SWCNT/PE were -620.1 kcal/mol and -791.7 kcal/mol, which were smaller than that of the SWCNT/PS and SWCNT/PMMA, so the interface bonding were better. The total energy of the SWCNT/PP and SWCNT/PE decreased gradually, which were -1 654.9 kcal/mol and -1 211.2 kcal/mol at 2 000 ps. Compared to the SWCNT/PS and SWCNT/PMMA, the total energy of the SWCNT/PP and SWCNT/PE were smaller, and the composite system were more stable.

关键词

分子动力学模拟 / 取向结晶 / 径向分布函数 / 界面能

Key words

Molecular dynamics simulation / Orientation crystallization / Radial distribution function / Interfacial energy

中图分类号

TB332

引用本文

导出引用
祁一信 , 鞠苏. 碳纳米管/结晶与非结晶性热塑性树脂界面形成分子动力学模拟. 塑料科技. 2024, 52(07): 1-6 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.07.001
QI Yi-xin, JU Su. Molecular Dynamics Simulation of the Interface Formation of Carbon Nanotube/Crystalline and Amorphous Thermoplastic Resin Composites[J]. Plastics Science and Technology. 2024, 52(07): 1-6 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.07.001

参考文献

1
WINHARD J, NESTLER D, KROLL L. Effects of process parameters in thermoforming of unidirectional fibre-reinforced thermoplastics[J]. Polymer, 2024, DOI: 10.20944/preprints202308.2131.v1.
2
SABET M. Enhancing the thermal and crystallization properties of polypropylene through carbon nanotube integration: A comprehensive investigation[J]. Iranian Polymer Journal, 2024, 33: 727-741.
3
王福吉,姜向何,魏钢,等.碳纤维增强热塑性树脂基复合材料周铣过程中刀-工-屑热量分配比例计算与切削温度预测[J].复合材料学报,2024,41(4):2099-2110.
4
肇研,刘寒松.连续纤维增强高性能热塑性树脂基复合材料的制备与应用[J].材料工程,2020,48(8):49-61.
5
XIE H J, ZHANG H G, WANG X, et al. Conductive and stable polyphenylene/CNT composite membrane for electrically enhanced membrane fouling mitigation[J]. Frontiers of Environmental Science & Engineering, 2024, DOI: 10.1007/s11783-024-1763-z.
6
LI X H, HE Y D, LI X F, et al. Simultaneous enhancements in toughness and electrical conductivity of polypropylene/carbon nanotube nanocomposites by incorporation of electrically inert calcium carbonate nanoparticles[J]. Industrial & Engineering Chemistry Research, 2017, 56: 2783-2788.
7
常艺,裴久阳,周苏生,等.功能化碳纳米管改性热塑性复合材料研究进展[J].材料导报A:综述篇,2017,31(10):84-90.
8
AL-SALEH M H. Electrical, EMI shielding and tensile properties of PP/PE blends filled with GNP: CNT hybrid nanofiller[J]. Synthetic Metals, 2016, 217: 322-330.
9
ELBAKYAN L, ZAPOROTSKOVA I. Composite nanomaterials based on polymethylmethacrylate doped with carbon nanotubes and nanoparticles: A review[J]. Polymer, 2024, DOI: 10.3390/polym16091242.
10
NIU Y F, ZHANG Y X, YAO J W, et al. Improving resistance-strain effects of conductive polymer composites modified by multiscale fillers: Short carbon fiber and carbon nanotube[J]. Polymer Composites, 2024, 45(7): 5839-5852.
11
刘根,辛勇.碳纳米管含量对碳纳米管/聚丙烯复合材料性能及微结构制品的影响[J].材料科学与工程学报,2021,39(4):692-697.
12
孙旭光,王春凯,刘昶,等.基于碳纳米管-聚合物的柔性触觉传感器研究[J].郑州大学学报,2019,40(6):1-5.
13
蒋彩.碳纳米管与环氧树脂的作用机制及对玻璃化转变温度和韧性的影响[D].长沙:国防科技大学,2016.
14
李亚莎,陈俊璋,郭玉杰,等.聚丙烯/富勒烯复合材料热力学性能分子动力学模拟[J].工程塑料应用,2023,51(9):32-39.
15
YANG H, CHEN Y, LIU Y, et al. Molecular dynamics simulation of polyethylene on single wall carbon nanotube[J]. The Journal of Chemical Physics, 2007, DOI: 10.1063/1.2768060.

基金

国家自然科学基金青年基金项目(52303115)

评论

PDF(2078 KB)

Accesses

Citation

Detail

段落导航
相关文章

/