基于动态共价键类玻璃高分子材料的制备及应用研究进展

康菡子, 朱浩霖, 周文欣, 杨柳, 张浩宇, 刘晓莉, 陈瑨

PDF(901 KB)
PDF(901 KB)
塑料科技 ›› 2024, Vol. 52 ›› Issue (06) : 155-160. DOI: 10.15925/j.cnki.issn1005-3360.2024.06.029
综述

基于动态共价键类玻璃高分子材料的制备及应用研究进展

作者信息 +

Progress in Preparation and Application of Vitrimers Based on Dynamic Covalent Bonds

Author information +
History +

摘要

热固性材料因性能卓越而广泛应用,但难重塑导致资源浪费和环境污染。将动态共价键引入聚合物的交联网络中,可制备兼具热固性材料性能并可重复回收利用的类玻璃高分子材料。文章总结了不同共价键交换类型类玻璃高分子的合成特点,着重阐述了酯交换、二硫交换、亚胺交换的反应机理及优缺点。针对类玻璃高分子的研究现状,分析了其在自修复、可焊接等领域的应用前景,最后结合目前市场需求及材料性能对未来类玻璃高分子的发展前景作出展望。

Abstract

Thermosetting materials are widely used due to their excellent performance, but their difficulty in reshaping leads to resource waste and environmental pollution. By introducing the dynamic covalent bond into the cross-linking network of polymers, vitrimers with thermosetting properties and recyclable properties are prepared. In the article, the synthesis characteristics of different covalent bond exchange types of vitrimers are summarized, and the reaction mechanism, advantages and disadvantages of transesterification, disulfide exchange and imine exchange are emphasized. According to the research status of vitrimers, the application prospects in the fields of self-healing and weldability are analyzed. Finally, according to the current market demand and material properties, the future development prospects of vitrimers are prospected.

关键词

类玻璃高分子 / 动态共价键 / 自修复 / 可焊接

Key words

Vitrimer / Dynamic covalent bond / Self-healing / Weldability

中图分类号

TQ314

引用本文

导出引用
康菡子 , 朱浩霖 , 周文欣 , . 基于动态共价键类玻璃高分子材料的制备及应用研究进展. 塑料科技. 2024, 52(06): 155-160 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.06.029
KANG Han-zi, ZHU Hao-lin, ZHOU Wen-xin, et al. Progress in Preparation and Application of Vitrimers Based on Dynamic Covalent Bonds[J]. Plastics Science and Technology. 2024, 52(06): 155-160 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.06.029

参考文献

1
MORICI E, CARROCCIO S C, BRUNO E, et al. Recycled (bio) plastics and (bio) plastic composites: A trade opportunity in a green future[J]. Polymers, 2022, DOI: 10.3390/polym14102038.
2
LUO J C, DEMCHUK Z, ZHAO X, et al. Elastic vitrimers: Beyond thermoplastic and thermoset elastomers[J]. Matter, 2022, 5(5): 1391-1422.
3
李超,吴宇超,陈婷婷,等.类玻璃高分子:兼具热固性与热塑性的可逆交联聚合物[J].材料科学与工程学报,2023,41(1):154-168.
4
DENISSEN W, WINNE J M, DU PREZ F E. Vitrimers: Permanent organic networks with glass-like fluidity[J]. Chemical Science, 2016, 7(1): 30-38.
5
SHARMA H, KRISHNAKUMAR B, DICKENS T J, et al. A bibliometric survey of research trends in vitrimer[J]. Heliyon, 2023,DOI:10.1016/j.heliyon.2023.e17350.
6
MONTARNAL D, CAPELOT M, TOURNILHAC F, et al. Silica-like malleable materials from permanent organic networks[J]. Science, 2011, 334: 965-968.
7
张希.可多次塑型、易修复及耐低温的三维动态高分子结构[J].高分子学报,2016(6):685-687.
8
ALABISO W, SCHLGL S. The impact of vitrimers on the industry of the future: Chemistry, properties and sustainable forward-looking applications[J]. Polymers, 2020, DOI: 10.3390/polym12081660.
9
LUCHERELLI M A, DUVAL A, AVéROUS L. Biobased vitrimers: Towards sustainable and adaptable performing polymer materials[J]. Progress in Polymer Science, 2022, DOI: 10.1016/j.progpolymsci.2022.101515.
10
李燕,周琳,赵秀丽,等.类玻璃高分子材料应用研究进展[J].工程塑料应用,2023,51(9):175-180.
11
XU Y, MA H, ZHANG H, et al. A dual dynamic network self-healing bio-based vitrimer and its application in multiply recyclable carbon fiber reinforced polymers[J]. Industrial Crops and Products, 2023, DOI: 10.1016/j.indcrop.2023.116755.
12
TRATNIK N, TANGUY N R, YAN N. Recyclable, self-strengthening starch-based epoxy vitrimer facilitated by exchangeable disulfide bonds[J]. Chemical Engineering Journal, 2023, DOI: 10.1016/j.cej.2022.138610.
13
KIM G, CAGLAYAN C, YUN G J. Epoxy-based catalyst-free self-healing elastomers at room temperature employing aromatic disulfide and hydrogen bonds[J]. ACS Omega, 2022, 7(49): 44750-44761.
14
赵世珍.环氧类玻璃高分子复合材料的设计制备和性能研究[D].北京:北京化工大学,2023.
15
曾艳宁,杨斌,杨伟明.环氧大豆油制备可自愈合,焊接,再加工的硼酯基类玻璃高分子[J].高分子通报,2022(10):87-98.
16
MIAO P C, LENG X F, LIU J, et al. Regulating the dynamic behaviors of transcarbamoylation-based vitrimers via mono-variation in density of exchangeable hydroxyl[J]. Macromolecules, 2022, 55(12): 4956-4966.
17
VIDIL T, LLEVOT A. Fully biobased vitrimers: Future direction toward sustainable cross-linked polymers[J]. Macromolecular Chemistry and Physics, 2022, DOI: 10.1002/macp.202100494.
18
纪拓,张跃宏,马菲,等.可循环利用的生物质基环氧树脂类玻璃高分子材料的研究进展[J].高分子材料科学与工程,2023,39(8):165-174.
19
李超,张沥元,曾雍,等.竹纤维增强大豆油基类玻璃高分子复合材料的制备与性能[J].复合材料学报,2023,40(5):3018-3025.
20
HAO C, LIU T, ZHANG S, et al. Triethanolamine-mediated covalent adaptable epoxy network: Excellent mechanical properties, fast repairing, and easy recycling[J]. Macromolecules, 2020, 53(8): 3110-3118.
21
CHEN J H, AN X P, LI Y D, et al. Reprocessible epoxy networks with tunable physical properties: synthesis, stress relaxation and recyclability[J]. Chinese Journal of Polymer Science, 2018, 36: 641-648.
22
CHEN M, SI H W, ZHANG H, et al. The crucial role in controlling the dynamic properties of polyester-based epoxy vitrimers: The density of exchangeable ester bonds (υ)[J]. Macromolecules, 2021, 54(21): 10110-10117.
23
RAN Y, ZHENG L J, ZENG J B. Dynamic crosslinking: An efficient approach to fabricate epoxy vitrimer[J]. Materials, 2021, DOI: 10.3390/ma14040919.
24
SARDON H, DOVE A P. Plastics recycling with a difference[J]. Science, 2018, 360: 380-381.
25
VORA N, CHRISTENSEN P R, DEMARTEAU J, et al. Leveling the cost and carbon footprint of circular polymers that are chemically recycled to monomer[J]. Science Advances, 2021, DOI: 10.1126/sciadv.abf0187.
26
吴剑桥.基于酯交换反应的生物基环氧类玻璃高分子[D].北京:北京化工大学,2021.
27
ZHANG J, LI W, WU Q. Renewable resource-derived elastomer vitrimer and its sustainable manufacturing and application in extreme environmental conditions[J]. BioResources, 2023, 18(3): 4395-4398.
28
BASS G F, EPPS T H. Recent developments towards performance-enhancing lignin-based polymers[J]. Polymer Chemistry, 2021, 12(29): 4130-4158.
29
ZHANG S, LIU T, HAO C, et al. Preparation of a lignin-based vitrimer material and its potential use for recoverable adhesives[J]. Green Chemistry, 2018, 20(13): 2995-3000.
30
LI T, CHEN C J, BROZENA A H, et al. Developing fibrillated cellulose as a sustainable technological material[J]. Nature, 2021, 590: 47-56.
31
刘来伍,具本植.基于酯交换和纤维素基Vitrimer材料的制备与性能研究[J].化工新型材料,2022,50(5):103-106, 111.
32
刘湍,费铭恩,赵保明,等.生物基类玻璃高分子材料的研究进展[J].高分子学报,2020,51(8):817-832.
33
周立生,刘剑侠,吴淑新,等.类玻璃高分子材料的研究进展[J].材料导报,2020,34(增刊1):585-591.
34
LUO C M, YANG W, QI W, et al. Cost-efficient and recyclable epoxy vitrimer composite with low initial viscosity based on exchangeable disulfide crosslinks[J]. Polymer Testing, 2022, DOI:10.1016/j.polymertesting.2022.107670.
35
ZHANG H, ZHOU L, ZHANG F T, et al. Aromatic disulfide epoxy vitrimer packaged electronic devices: Nondestructive healing and recycling[J]. Polymer, 2022, DOI: 10.1016/j.polymer.2022.125163.
36
JIANG L, TIAN Y Z, WANG X M, et al. A fully bio-based Schiff base vitrimer with self-healing ability at room temperature[J]. Polymer Chemistry, 2023, 14(7): 862-871.
37
ZHENG H, WANG S Q, LU C, et al. Thermal, near-infrared light, and amine solvent triple-responsive recyclable imine-type vitrimer: SHApe memory, accelerated photohealing/welding, and destructing behaviors[J]. Industrial & Engineering Chemistry Research, 2020, 59(50): 21768-21778.
38
FENG Z B, YU B, HU J, et al. Multifunctional vitrimer-like polydimethylsiloxane (PDMS): Recyclable, self-healable, and water-driven malleable covalent networks based on dynamic imine bond[J]. Industrial & Engineering Chemistry Research, 2019, 58(3): 1212-1221.
39
CHONG K L, LAI J C, RAHMAN R A, et al. A review on recent approaches to sustainable bio-based epoxy vitrimer from epoxidized vegetable oils[J]. Industrial Crops and Products, 2022, DOI: 10.1016/j.indcrop.2022.115857.
40
ZHAO X L, LIU Y Y, WENG Y X, et al. Sustainable epoxy vitrimers from epoxidized soybean oil and vanillin[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(39): 15020-15029.
41
DHERS S, VANTOMME G, AVÉROUS L. A fully bio-based polyimine vitrimer derived from fructose[J]. Green Chemistry, 2019, 21(7): 1596-1601.
42
DEBNATH S, KAUSHAL S, OJHA U. Catalyst-free partially bio-based polyester vitrimers[J]. ACS Applied Polymer Materials, 2020, 2(2): 1006-1013.
43
CUMINET F, CAILLOL S, DANTRAS É, et al. Neighboring group participation and internal catalysis effects on exchangeable covalent bonds: Application to the thriving field of vitrimer chemistry[J]. Macromolecules, 2021, 54(9): 3927-3961.
44
CHRISTENSEN P R, SCHEUERMANN A M, LOEFFLER K E, et al. Closed-loop recycling of plastics enabled by dynamic covalent diketoenamine bonds[J]. Nature Chemistry, 2019, 11(5): 442-448.
45
WANG S Y, URBAN M W. Self-healing polymers[J]. Nature Reviews Materials, 2020, 5(8): 562-583.
46
KRISHNAKUMAR B, PRASANNA SANKA R V S, BINDER W H, et al. Catalyst free self-healable vitrimer/graphene oxide nanocomposites[J]. Composites Part B: Engineering, 2020, DOI: 10.1016/j.compositesb.2019.107647.
47
PARK C, KIM G, JUNG J, et al. Enhanced self-healing performance of graphene oxide/vitrimer nanocomposites: A molecular dynamics simulations study[J]. Polymer, 2020, DOI: 10.1016/j.polymer.2020.122862.
48
XU Y Z, DAI S L, ZHANG H B, et al. Reprocessable, self-adhesive, and recyclable carbon fiber-reinforced composites using a catalyst-free self-healing bio-based vitrimer matrix[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(48): 16281-16290.
49
AN L, SHI Q, JIN C Y, et al. Chain diffusion based framework for modeling the welding of vitrimers[J]. Journal of the Mechanics and Physics of Solids, 2022, DOI: 10.1016/j.jmps.2022.104883.
50
SHI Q, JIN C Y, CHEN Z Q, et al. On the welding of vitrimers: Chemistry, mechanics and applications[J]. Advanced Functional Materials, 2023, DOI: 10.1002/adfm.202300288.
51
CHEN Z Q, WANG J T, QI H J, et al. Green and sustainable layered chitin-vitrimer composite with enhanced modulus, reprocessability, and smart actuator function[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(40): 15168-15178.
52
Z T, YANG H K, WANG D. Catalyst control of interfacial welding mechanical properties of vitrimers[J]. Chinese Journal of Polymer Science, 2022, 40(6): 611-617.
53
AN L, JIN C Y, LI X Z, et al. Surface degradation assisted welding for vitrimer composites[J]. Materials Letters, 2022, DOI: 10.1016/j.matlet.2022.133051.
54
WU P, LOU L Y, XU T Q, et al. Epoxy vitrimer based on temperature-responsive pure organic room temperature phosphorescent materials[J]. Chemistry Select, 2022, DOI: 10.1002/slct.202104149.
55
向富康,赵伟,徐永健,等.聚酯类玻璃高分子纸基复合材料的制备及其传感性能研究[J].陕西科技大学学报,2020,38(4):1-7.
56
ZHANG D, CAO W H, GUO Z H, et al. Structure and properties of a flame retardant ternary vitrimer regulated by cyclic and long-chain dicarboxylic acids[J]. Polymer Degradation and Stability, 2023, DOI: 10.1016/j.polymdegradstab.2022.110234.

基金

河南省科学院基本科研费项目(230603072)
河南省科学院科技开放合作项目(220903020)
河南省科学院成果转移转化项目(231603001)

评论

PDF(901 KB)

Accesses

Citation

Detail

段落导航
相关文章

/