环境友好型阻燃剂改性聚乳酸研究进展

尚祖明, 李东升, 俞利生, 李名龙, 魏志勇

PDF(1004 KB)
PDF(1004 KB)
塑料科技 ›› 2024, Vol. 52 ›› Issue (06) : 149-154. DOI: 10.15925/j.cnki.issn1005-3360.2024.06.028
综述

环境友好型阻燃剂改性聚乳酸研究进展

作者信息 +

Research Progress on Environmentally Friendly Flame Retardant Modified Polylactide

Author information +
History +

摘要

综述了近年基于生物质来源的环境友好型阻燃剂改性聚乳酸(PLA)的研究进展。总结并阐述了以木质素、壳聚糖、环糊精、香蕉粉/纤维、植酸、单宁酸以及呋喃基化合物为生物质来源制备的环境友好型阻燃剂及其改性PLA的最新研究成果,分析并对比了各类环境友好型阻燃剂的优缺点。最后,立足实际应用对未来环境友好型阻燃剂及其改性PLA复合材料的发展前景进行了展望,提出生物质来源的环境友好型阻燃PLA复合材料将朝着低成本、高性能和功能一体化的方向发展。

Abstract

The research progress of environmentally friendly flame retardants based on biomass sources and their modified polylactide (PLA) in recent years was summarized. Recent research results on environmentally friendly flame retardants and their modified PLA prepared from biomass sources of lignin, chitosan, cyclodextrins, banana powder/fiber, phytic acid, tannins, and furan-based compounds were summarized and described. Additionally, the advantages and disadvantages of various environmentally friendly flame retardants were analyzed and compared. Finally, the future development prospects of environmentally friendly flame retardants and their modified PLA composites are prospected based on practical applications, and it is proposed that environmentally friendly flame-retardant PLA composites based on biomass sources will be developed toward low-cost, high-performance, and functional.

关键词

生物质 / 环境友好 / 阻燃剂 / 聚乳酸

Key words

Biomass / Environmentally friendly / Flame retardant / Polylactide

中图分类号

TQ323.4 / TB332

引用本文

导出引用
尚祖明 , 李东升 , 俞利生 , . 环境友好型阻燃剂改性聚乳酸研究进展. 塑料科技. 2024, 52(06): 149-154 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.06.028
SHANG Zu-ming, LI Dong-sheng, YU Li-sheng, et al. Research Progress on Environmentally Friendly Flame Retardant Modified Polylactide[J]. Plastics Science and Technology. 2024, 52(06): 149-154 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.06.028

参考文献

1
VOLLMER II., JENKS M J F, ROELANDS M C P, et al. Beyond mechanical recycling: Giving new life to plastic waste[J]. Angewandte Chemie-International Edition, 2020, 59(36): 15402-15423.
2
LIU Z B, HU D, HUANG L, et al. Simultaneous improvement in toughness, strength and biocompatibility of poly(lactic acid) with polyhedral oligomeric silsesquioxane[J]. Chemical Engineering Journal, 2018, 346: 649-661.
3
MNGOMEZULU M E, JOHN M J, JACOBS V, et al. Review on flammability of biofibres and biocomposites[J]. Carbohydrate Polymers, 2014, 111: 149-182.
4
王自博,吕锦翔,肖丹.基于生物材料阻燃PLA研究进展[J].塑料科技,2022,50(7):96-100.
5
胡旭,李娟,李星.生物基阻燃剂在聚乳酸中的应用研究进展[J].工程塑料应用,2020,48(3):150-155.
6
VAHABI H, SHABANIAN M, ARYANASAB F, et al. Inclusion of modified lignocellulose and nano-hydroxyapatite in development of new bio-based adjuvant flame retardant for poly(lactic acid)[J]. Thermochimica Acta, 2018, 666: 51-59.
7
MA X B, WU N J, LIU P B, et al. Fabrication of highly efficient phenylphosphorylated chitosan bio-based flame retardants for flammable PLA biomaterial[J]. Carbohydrate Polymers, 2022, DOI: 10.1016/j.carbpol.2022.119317.
8
DECSOV K E, PTVOS B, MAROSI G, et al. Microfibrous cyclodextrin boosts flame retardancy of poly(lactic acid) II - phosphorous silane treatment further enhances the effectivity[J]. Polymer Degradation and Stability, 2022, DOI: 10.1016/j.polymdegradstab.2022.109938.
9
SAJNA V P, MOHANTY S, NAYAK S K, et al. A study on thermal degradation kinetics and flammability properties of poly(lactic acid)/banana fiber/nanoclay hybrid bionanocomposites[J]. Polymer Composites, 2017, 38(10): 2067-2079.
10
LAOUTID F, VAHABI H, SHABANIAN M, et al. A new direction in design of bio-based flame retardants for poly(lactic acid)[J]. Fire and Materials, 2018, 42(8): 914-924.
11
SHIH Y F, LIN C W, CAI Y L, et al. Effects of bio-based polyelectrolyte complex on thermal stability, flammability, and mechanical properties performance utilization in PLA/PBS composites[J]. Buildings, 2023, DOI: 10.3390/buildings13010154.
12
YANG X M, SONG X L, WANG Y J, et al. Synthesis of phytic acid-based compounds for improving the mechanical properties and fire performances of poly(lactic acid)[J]. Journal of Vinyl & Additive Technology, 2022, 28(3): 459-473.
13
ZHAN Y Y, WU X J, WANG S S, et al. Synthesis of a bio-based flame retardant via a facile strategy and its synergistic effect with ammonium polyphosphate on the flame retardancy of polylactic acid[J]. Polymer Degradation and Stability, 2021, DOI: 10.1016/j.polymdegradstab.2021.109684.
14
JING J, ZHANG Y, TANG X L, et al. Layer by layer deposition of polyethylenimine and bio-based polyphosphate on ammonium polyphosphate: A novel hybrid for simultaneously improving the flame retardancy and toughness of polylactic acid[J]. Polymer, 2017, 108: 361-371.
15
XIAO D, CHEN S, WU F J, et al. Super-efficient fire safety poly(lactide) enabled by unique radical trapping[J]. Journal of Materials Chemistry A, 2023, 11(4): 1651-1657.
16
MARTINS R C, SILVA RIBEIRO S PDA, CUNHA REZENDE M J, et al. Flame-retarding properties of injected and 3D-printed intumescent bio-based PLA composites: The influence of bronsted and lewis acidity of montmorillonite[J]. Polymers, 2022, DOI: 10.3390/polym14091702.
17
MAQSOOD M, LANGENSIENPEN F, SEIDE G, et al. The efficiency of biobased carbonization agent and intumescent flame retardant on flame retardancy of biopolymer composites and investigation of their melt-spinnability[J]. Molecules, 2019, DOI: 10.3390/molecules24081513.
18
COSTES L, LAOUTID F, BROHEZ S, et al. Phytic acid-lignin combination: A simple and efficient route for enhancing thermal and flame retardant properties of polylactide[J]. European Polymer Journal, 2017, 94: 270-285.
19
宋艳,林肯,周宇彤,等.含硅-氮木质素协同聚磷酸铵阻燃聚乳酸[J/OL].复合材料学报,2023,DOI:10.13081/j.cnki.fhclxb.20231205.003.
20
YANG H T, SHI B B, XUE Y J, et al. Molecularly engineered lignin-derived additives enable fire-retardant, UV-shielding, and mechanically strong polylactide biocomposites[J]. Biomacromolecules, 2021, 22(4): 1432-1444.
21
陈小明,梁国祺,张峻豪,等.壳聚糖/植酸钠包覆聚磷酸铵复合物对聚乳酸复合材料阻燃性能的影响[J].中国塑料,2023,37(5):62-68.
22
FANG Q, ZHAN Y Y, CHEN X, et al. A bio-based intumescent flame retardant with biomolecules functionalized ammonium polyphosphate enables polylactic acid with excellent flame retardancy[J]. European Polymer Journal, 2022, DOI: 10.1016/j.eurpolymj.2022.111479.
23
WANG Y D, MA L, WANG H, et al. Fabrication of a flame retardant, strong mechanical toughness and antimicrobial polylactic acid by chitosan Schiff base/ammonium polyphosphate[J]. Polymer Degradation and Stability, 2023, DOI: 10.1016/j.polymdegradstab.2023.110492.
24
XU Y, ZHANG W J, QIU Y, et al. Preparation and mechanism study of a high efficiency bio-based flame retardant for simultaneously enhancing flame retardancy, toughness and crystallization rate of poly (lactic acid)[J]. Composites Part B-Engineering, 2022, DOI: 10.1016/j.compositesb.2022.109913.
25
何晶秀,陈雅君.生物基阻燃剂阻燃聚乳酸的研究进展[J].中国塑料,2021,35(2):119-131.
26
TEOH E L, CHOW W S, JAAFAR M, et al. β-cyclodextrin as a partial replacement of phosphorus flame retardant for poly(lactic acid)/poly(methyl methacrylate): A more environmental friendly flame-retarded blends[J]. Polymer-Plastics Technology and Engineering, 2017, 56 (15): 1680-1694.
27
ZHANG X L, YANG Y B, LI M T, et al. Modified β-cyclodextrin microspheres towards the application in intumescent fire resistance and smoke-suppressing of bio-based poly(L-lactic acid)[J]. International Journal of Biological Macromolecules, 2023, DOI: 10.1016/j.ijbiomac.2023.123666.
28
KONG F B, NIE B S, HAN C, et al. Flame retardancy and thermal property of environment-friendly poly(lactic acid) composites based on banana peel powder[J]. Materials, 2022, DOI: 10.3390/ma15175977.
29
KONG F B, HE Q L, PENG W, et al. Eco-friendly flame retardant poly(lactic acid) composites based on banana peel powders and phytic acid: Flame retardancy and thermal property[J]. Journal of Polymer Research, 2020, DOI: 10.1007/s10965-020-02176-4.
30
LAOUTID, KARASEVA V, COSTES L, et al. Novel bio-based flame retardant systems derived from tannic acid[J]. Journal of Renewable Materials, 2018, 6(6): 559-572.
31
QIU S, SUN J, LI H F, et al. A green way to simultaneously enhance the mechanical, flame retardant and anti-ultraviolet aging properties of polylactide composites by the incorporation of tannic acid derivatives[J]. Polymer Degradation and Stability, 2022, DOI: 10.1016/j.polymdegradstab.2022.109831.
32
QIU S, LI Y C, QI P, et al. Improving the flame retardancy and accelerating the degradation of poly(lactic acid) in soil by introducing fully bio-based additives[J]. International Journal of Biological Macromolecules, 2021, 193: 44-52.
33
CHEN J X, LIU Z S, QIU S, et al. A new strategy for the preparation of polylactic acid composites with flame retardancy, UV resistance, degradation, and recycling performance[J]. Chemical Engineering Journal, 2023, DOI: 10.1016/j.cej.2023.145000.
34
COSTES L, LAOUTID F, DUMAZERT L, et al. Metallic phytates as efficient bio-based phosphorous flame retardant additives for poly(lactic acid)[J]. Polymer Degradation and Stability, 2015, 119: 217-227.
35
YANG Y X, HAURIE L, ZHANG J, et al. Effect of bio-based phytate (PA-THAM) on the flame retardant and mechanical properties of polylactide (PLA)[J]. Express Polymer Letters, 2020, 14(8): 705-716.
36
ZHANG M F, WANG Y, HUANG J, et al. Phytic acid-based flame retardant and its application to poly(lactic acid) composites[J]. New Journal of Chemistry, 2023, 47(42): 19494-19503.
37
XIAO D, LV J X, WU F J, et al. Development of multifunctional highly-efficient bio-based fire-retardant poly(lactic acid) composites for simultaneously improving thermal, crystallization and fire safety properties[J]. International Journal of Biological Macromolecules, 2022, 215: 646-656.
38
XIAO D, ZHENG M T, WU F J, et al. Fabrication of novel renewable furan-based phosphorus and its applications in poly(lactic acid): Thermal, flammability, crystallization and mechanical properties[J]. Polymer Degradation and Stability, 2022, DOI: 10.1016/j.polymdegradstab.2022.110060.
39
XIAO D, WANG Z B, GOHS U, et al. A novel highly-efficient bio-based fire retardant for poly (lactic acid): Synthesis, preparation, property and mechanism[J]. Chemical Engineering Journal, 2022, DOI: 10.1016/j.cej.2022.137092.
40
LI C X, WANG B T, YANG Y, et al. Synergistic effect of poly(ionic liquid) and phosphoramide on flame retardancy and crystallization of poly(lactic acid)[J]. International Journal of Biological Macromolecules, 2022, 223: 1344-1355.
41
YU L F, HUO S Q, WANG C, et al. Flame-retardant poly(L-lactic acid) with enhanced UV protection and well-preserved mechanical properties by a furan-containing polyphosphoramide[J]. International Journal of Biological Macromolecules, 2023, DOI: 10.1016/j.ijbiomac.2023.123707.
42
WANG Y, WANG D, ZHANG M F, et al. Supper-low-addition flame retardant for the fully bio-based poly(lactic acid) composites[J]. Polymer Degradation and Stability, 2023, DOI: 10.1016/j.polymdegradstab.2023.110309.
43
YE G F, HUO S Q, WANG C, et al. One-step and green synthesis of a bio-based high-efficiency flame retardant for poly(lactic acid)[J]. Polymer Degradation and Stability, 2021, DOI: 10.1016/j.polymdegradstab.2021.109696.
44
JING J, ZHANG Y, TANG X L, et al. Combination of a bio-based polyphosphonate and modified graphene oxide toward superior flame retardant polylactic acid[J]. Rsc Advances, 2018, 8(8): 4304-4313.
45
XU J, FEI J H, TANG T, et al. Achieving high flame retardancy, crystallization and biodegradability PLA based on 1 wt% addition of novel fully bio-based flame retardant[J]. Polymer, 2022, DOI: 10.1016/j.polymer.2022.125263.
46
YAO M H, LIU L H, MA C C, et al. A lysine-derived flame retardant for improved flame retardancy, crystallinity, and aqueous-phase degradation of polylactide[J]. Chemical Engineering Journal, 2023, DOI: 10.1016/j.cej.2023.142189.

基金

辽宁省自然科学基金计划项目(2022-YKLH-01)
营口市企业博士双创计划项目(YKSCJH2023-006)

评论

PDF(1004 KB)

Accesses

Citation

Detail

段落导航
相关文章

/