水污染处理用表面改性海绵的研究进展

王颖, 吴江渝, 曾小平, 王大威

PDF(684 KB)
PDF(684 KB)
塑料科技 ›› 2024, Vol. 52 ›› Issue (06) : 144-148. DOI: 10.15925/j.cnki.issn1005-3360.2024.06.027
综述

水污染处理用表面改性海绵的研究进展

作者信息 +

Research Progress of Surface Modified Sponge for Water Pollution Treatment

Author information +
History +

摘要

表面改性海绵因设计灵活、高孔隙率、高吸附量成为吸附材料的研究热点。文章从表面改性方法和提高性能角度,综述了近年来水污染处理领域用以油水分离、吸附重金属及吸附染料的表面改性海绵最新研究成果及动向,指出当前表面改性海绵研究的瓶颈问题。研究表明:海绵表面疏水/疏油改性可实现油水的有效分离,改性海绵表面接枝的功能基团可通过螯合、静电作用等方式实现重金属离子的吸附,海绵表面引入基团与染料分子之间的电荷吸引、π-π相互作用、氢键等是实现染料吸附的重要因素。未来,表面改性海绵研究将朝向多功能性、智能化方向发展。

Abstract

Surface modified sponge has gained significant attention as an adsorption material, due to its flexible design, high porosity and superior adsorption capacity. The latest research achievements and trends of surface modified sponges for oil-water separation, adsorption of heavy metals and dyes in recent years are reviewed from the perspective of surface modification strategies and improved properties. The current bottleneck issues in research on surface modified sponges are pointed out. The studies show that the hydrophobic/oleophobic modification on sponge surface successfully leads to oil-water separation. The grafted functional groups onto the modified sponge surface can implement the adsorption of heavy metal ions through chelation and electrostatic interaction. The effects between the introduced groups on the sponge surface and the dye molecules are the important factors for the realization of dye adsorption, including charge attraction, π-π interaction and hydrogen bond. The future research on surface-modified sponges will be directed toward multifunctionality and intelligence.

关键词

表面改性海绵 / 水污染处理 / 油水分离 / 重金属吸附 / 染料吸附

Key words

Surface modified sponge / Water pollution treatment / Oil-water separation / Heavy metal adsorption / Dye adsorption

中图分类号

TQ328.1

引用本文

导出引用
王颖 , 吴江渝 , 曾小平 , . 水污染处理用表面改性海绵的研究进展. 塑料科技. 2024, 52(06): 144-148 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.06.027
WANG Ying, WU Jiang-yu, ZENG Xiao-ping, et al. Research Progress of Surface Modified Sponge for Water Pollution Treatment[J]. Plastics Science and Technology. 2024, 52(06): 144-148 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.06.027

参考文献

1
WANG W, Y, LIU H, et al. Recent advances in application of polypyrrole nanomaterial in water pollution control[J]. Separation and Purification Technology, 2024, DOI: 10.1016/j.seppur.2023.125265.
2
王超,李昕,李宁.聚酰胺胺高分子材料在水处理中的应用[J].高分子通报,2013(12):99-103.
3
袁源,张浩然,王士凡,等.基于丙烯酸/丙烯酰胺/苯乙烯的新型磁性水凝胶吸附重金属的研究[J].合成树脂及塑料,2022,39(2):28-32, 49.
4
张曙光,刘露,胡仁威,等.羟基官能化增强柱[5]芳烃基多孔有机聚合物对水中污染物吸附性能[J].高分子通报,2022(12):81-91.
5
贾朝阳,杨清香,赵俊红,等.Fe3O4/SiO2/PS的制备及对有机染料分子的吸附性能[J].高分子材料科学与工程,2019,35(10):152-160.
6
CAI J, ZHANG D, XU W, et al. Polysaccharide-based hydrogels derived from cellulose: The architecture change from nanofibers to hydrogels for a putative dual function in dye wastewater treatment[J]. Journal of Agricultural and Food Chemistry, 2020, 68(36): 9725-9732.
7
JUNLAPONG K, MAIJAN P, CHAIBUNDIT C, et al. Effective adsorption of methylene blue by biodegradable superabsorbent cassava starch-based hydrogel[J]. International Journal of Biological Macromolecules, 2020, 158: 258-264.
8
路建美.可控结构高分子吸附材料[M].北京:化学工业出版社,2018.
9
AHMAD Z, LI Y, HUANG C, et al. Underwater suspended bifunctionalized polyethyleneimine-based sponge for selective removal of anionic pollutants from aqueous solution[J]. Journal of Hazardous Materials, 2021, DOI: 10.1016/j.jhazmat.2021.125284.
10
杨晨曦,李娟,王健.改性海绵的合成策略及其油水分离应用研究进展[J].化工新型材料,2020,48(8):18-21, 26.
11
戴国琛,张泽天,高文伟,等.油水乳液分离吸附材料的分离原理、构建方法和分离性能[J].化工进展,2019,38(4):1785-1793.
12
詹斌.仿生超润湿表面的制备及其油水分离性能研究[D].长春:吉林大学,2021.
13
YUAN J, LIAO F F, GUO Y N, et al. Preparation and performance of superhydrophilic and superoleophobic membrane for oil/water separation[J]. Progress in Chemistry, 2019, 31(1): 144-155.
14
何兰,高助威,亓欣雨,等.三聚氰胺海绵疏水改性及在油水分离领域的研究进展[J].化工进展,2023,5:445-451.
15
ZENG Z S, TAYLOR S E. Facile preparation of superhydrophobic melamine sponge for efficient underwater oil-water separation[J]. Separation and Purification Technology, 2020, 247: 116996-117003.
16
NAZHIPKYZY M, ASSYLKHANOVA D, ARAYLIM N, et al. Effective separation of petroleum oil-water mixtures via flexible and re-usable hydrophobic soot-coated melamine sponge[J]. Journal of Water Process Engineering, 2022, DOI: 10.1016/j.jwpe.2022.103032.
17
JAMSAZ A, GOHARSHADI E K. An environmentally friendly superhydrophobic modified polyurethane sponge by seashell for the efficient oil/water separation[J]. Process Safety and Environmental Protection, 2020, 139: 297-304.
18
LI S, ZHANG L, QIN Z, et al. Hydrophobic Ti3C2Tx/PU sponge prepared from commercial amphiphilic PU sponge for oil/water separation with ultrahigh flux[J].Journal of Environmental Chemical Engineering, 2022, 10(6): 108542-108553.
19
PENG M, ZHU Y, LI H, et al. Synthesis and application of modified commercial sponges for oil-water separation[J]. Chemical Engineering Journal, 2019, 373: 213-226.
20
WANG G, ZENG Z, WU X, et al. Three-dimensional structured sponge with high oil wettability for the clean-up of oil contaminations and separation of oil-water mixtures[J]. Polymer Chemistry, 2014, 5(20): 5942-5948.
21
ZHANG Y, HOU S, SONG H, et al. A green and facile one-step hydration method based on ZIF-8-PDA to prepare melamine composite sponges with excellent hydrophobicity for oil-water separation[J]. Journal of Hazardous Materials, 2023, 451: 131064-131082.
22
JIN L, GAO Y, HUANG Y, et al. Mussel-inspired and in situ polymerization-modified commercial sponge for efficient crude oil and organic solvent adsorption[J]. ACS Applied Materials & Interfaces, 2022, 14(2): 2663-2673.
23
J, WANG B, MA Q, et al. Preparation of superhydrophobic melamine sponges decorated with polysiloxane nanotubes by plasma enhanced chemical vapor deposition (PECVD) method for oil/water separation[J]. Materials Research Express, 2018, DOI: 10.1088/2053-1591/aad0e1.
24
CHOI Y, KIM Y T, YOU J B, et al. An efficient isolation of foodborne pathogen using surface-modified porous sponge[J]. Food Chemistry, 2019, 270: 445-451.
25
HABIBI N, POURJAVADI A. Thermally conductive and superhydrophobic polyurethane sponge for solar-assisted separation of high-viscosity crude oil from water[J]. ACS Applied Materials & Interfaces, 2022, 14(5): 7329-7339.
26
LI J, DONG L, ZHANG D, et al. Mesoporous carbon spheres modified polyurethane sponge/phase change material composites: Photothermal conversion, thermal storage and efficient recovery of high-viscosity crude oil[J]. Carbon, 2023, DOI: 10.1016/j.carbon.2023.118372.
27
XIAO Q R, XU P, SUN S, et al. Facile fabrication of ink-based conductive hydrophobic melamine sponge for oil/water separation and oils detection[J]. Applied Surface Science, 2022, 604: 154532-154542.
28
KIM S, LIM C, KWAK C H, et al. Hydrophobic melamine sponge prepared by direct fluorination for efficient separation of emulsions[J]. Journal of Industrial and Engineering Chemistry, 2023, 118: 259-267.
29
LIU Y Y, WANG X, FENG S Y. Nonflammable and magnetic sponge decorated with polydimethylsiloxane brush for multitasking and highly efficient oil-water separation[J]. Advanced Functional Materials, 2019, DOI: 10.1002/adfm.201902488.
30
WANG H, GAO F, REN R, et al. Caffeic acid polymer rapidly modified sponge with excellent anti-oil-adhesion property and efficient separation of oil-in-water emulsions[J]. Journal of Hazardous Materials, 2021, DOI: 10.1016/j.jhazmat.2020.124197.
31
马立群,李爽,王雅珍,等.污水中重金属离子吸附材料研究进展[J].化工新型材料,2020,48(10):290-293.
32
李美兰,豆小喻,何娇,等.羧基化磁性Fe3O4复合材料的制备及其对水体中Pb2+的吸附研究[J].中国塑料,2021,35(10):37-44.
33
曹如楼,杨卫民,丁玉梅,等.静电纺丝纳米纤维在水体重金属及染料吸附中的研究进展[J].塑料科技,2018,46(11):112-117.
34
赵梦奇,司马义·努尔拉,廖银念,等.马来酸酐-丙烯酰胺交联共聚物的制备及其重金属吸附性能[J].合成树脂及塑料,2015,32(5):24-26, 31.
35
梁宁,陆小凤,周街荣,等.高内相乳液原位聚合制备多孔复合材料吸附铅离子[J].材料导报,2023,37(15):257-263.
36
FENG T, XU J, YU C, et al. Graphene oxide wrapped melamine sponge as an efficient and recoverable adsorbent for Pb(II) removal from fly ash leachate[J]. Journal of Hazardous Materials, 2019, 367: 26-34.
37
HUANG J, XU Y, ZHANG X, et al. Polyethylenimine and dithiocarbamate decorated melamine sponges for fast copper (Ⅱ) ions removal from aqueous solution[J]. Applied Surface Science, 2018, 445: 471-477.
38
HUANG T, CAO S, LUO D, et al. Polydopamine-assisted polyethylenimine grafting melamine foam and the application in wastewater purification[J]. Chemosphere, 2022, DOI: 10.1016/j.chemosphere.2021.132054.
39
JIN L, JI H, GAO Y, et al. A facile and high-efficiency strategy towards instantaneous clean-up of positively-charged microcontaminants by regenerative carboxylated sponge[J]. Chemical Engineering Journal, 2020, 388: 124301-124310.
40
JIN L, GAO Y, YIN J, et al. Functionalized polyurethane sponge based on dopamine derivative for facile and instantaneous clean-up of cationic dyes in a large scale[J]. Journal of Hazardous Materials, 2020, 400: 123203-123211.
41
周爱玲,贾爱忠,赵新强,等.污水重金属离子选择性吸附的研究进展[J].材料导报,2023,37(9):46-55.
42
JIANG S, LI S, ZHANG P, et al. Engineering tannic acid-polyethyleneimine multilayer-decorated melamine sponge for highly efficient Pb(II) adsorption[J]. Journal of Environmental Chemical Engineering, 2022, 10(6): 108670-108679.
43
WANG S, CHI H, SUN H, et al. Facile and eco-friendly fabrication of multifunctional melamine sponge for labeled Cr(VI) removal and highly efficient oil/water separation[J]. Macromolecular Materials and Engineering, 2021, 306(6): 1-12.
44
LIU Y, GAO Q, LI C, et al. Effective coating of crosslinked polyethyleneimine on elastic spongy monolith for highly efficient batch and continuous flow adsorption of Pb(II) and acidic red 18[J]. Chemical Engineering Journal, 2020, DOI: 10.1016/j.cej.2019.123610.
45
余芳,廖腾飞,张芝蕾,等.兼具乳液分离和染料吸附性能的复合海绵的制备及性能研究[J].现代化工,2022,42(8):155-160.
46
ZHU X, ZHOU G, HE G, et al. Directly loading graphene oxide into melamine sponge for fast and high-efficiency adsorption of methylene blue[J]. Surfaces and Interfaces, 2023, 36: 102575-102584.
47
ZENG X, CAI W, FU S, et al. A novel Janus sponge fabricated by a green strategy for simultaneous separation of oil/water emulsions and dye contaminants[J]. Journal of Hazardous Materials, 2022, 424: 127543-127556.
48
颜汝玉,张宝浩,贾婧,等.海绵负载双组分凝胶剂对染料吸附的研究[J].化学工业与工程,2022,39(1):83-90.
49
MALLAKPOUR S, BEHRANVAND V. Polyurethane sponge modified by alginate and activated carbon with abilities of oil absorption, and selective cationic and anionic dyes clean-up[J]. Journal of Cleaner Production, 2021, 312: 127513-127522.
50
MALLAKPOUR S, BEHRANVAND V. Modification of polyurethane sponge with waste compact disc-derived activated carbon and its application in organic solvents/oil sorption[J]. New Journal of Chemistry, 2020, 44(36): 15609-15616.
51
MANABE S, KILIYANKIL V A, TAKIGUCHI S, et al. Graphene nanosheets homogeneously incorporated in polyurethane sponge for the elimination of water-soluble organic dyes[J]. Journal of Colloid and Interface Science, 2021, 584: 816-826.
52
NIE K, JI N, XU J, et al. Fast and efficient removal of dyes and Cr(VI) ion from wastewater using halloysite nanotubes-covalently coated polyurethane sponges[J]. Journal of Environmental Chemical Engineering, 2022, 10(5): 108308-108317.

基金

武汉工程大学研究生教育创新基金(CX2021149)

评论

PDF(684 KB)

Accesses

Citation

Detail

段落导航
相关文章

/