
温度对环氧树脂基复合泡沫材料力学性能的影响
王彩华, 尚泽阳, 胡庆祥, 刘帅, 高立斌
温度对环氧树脂基复合泡沫材料力学性能的影响
Effect of Temperature on Mechanical Properties of Epoxy Resin Matrix Composite Foams
空心玻璃微珠/环氧树脂(HGM/EP)作为保温隔热材料,在极端温度下的服役状态非常重要。采用注模成型法制备了HGM/EP复合材料,分别在20、40、60、80 ℃温度下对不同HGM填充量的复合材料进行准静态压缩实验,测定了压缩强度、弹性模量等力学参数,并结合SEM对其破坏形貌与机理进行分析。结果表明:适当添加HGM可以提高HGM/EP复合材料的力学性能。当HGM填充量为50%时,HGM/EP的压缩强度最大为46.3 MPa。HGM填充量为70%时,HGM/EP的弹性模量最大为1 638.8 MPa。温度对HGM/EP复合材料的影响显著,20 ℃下HGM填充量较低时主要以环氧树脂基体弹塑性破坏为主。随着温度的升高和HGM填充量的增加,HGM破碎引发HGM/EP复合材料的脆性破坏。
Hollow glass microsphere/epoxy resin (HGM/EP), as a thermal insulation material, is very important in the service state under extreme temperatures. HGM/EP composites were prepared by injection molding method. Quasi-static compression experiments were carried out at 20, 40, 60, 80 ℃ respectively for composites with different HGM filling amount. Mechanical parameters such as compressive strength and elastic modulus were determined, and the failure morphology and mechanism were analyzed by SEM. The results show that proper addition of HGM can improve the mechanical properties of HGM/EP composites. When the HGM filling amount is 50%, the maximum compressive strength of HGM/EP is 46.3 MPa. When the HGM filling amount is 70%, the maximum elastic modulus of HGM/EP is 1 638.8 MPa. The influence of temperature on HGM/EP composites is significant. The elastoplastic failure of epoxy resin matrix is the main failure when the HGM filling amount is low at 20 ℃. With the increase of temperature and HGM filling amount, HGM breakage leads to brittle failure of HGM/EP composites.
环氧树脂 / 空心玻璃微珠 / 温度 / 屈服强度 / 弹性模量
Epoxy resin / Hollow glass microbeads / Temperature / Yield strength / Elasticity modulus
TB332
1 |
王济远,赵海洲,于良民,等.环氧树脂基复合泡沫材料组成与应用[J].当代化工,2016,45(2):329-331, 335.
|
2 |
苏航,段正才,冉安国,等.环氧树脂/中空玻璃微珠复合材料研究现状[J].工程塑料应用,2022,50(1):165-169.
|
3 |
史利利,李瑞,胡永玲.国内空心玻璃微珠/环氧树脂基固体浮力材料研究进展[J].化学与粘合,2020,42(2):137-139.
|
4 |
马玉民,蔡耀武,张勇,等.空心玻璃微珠的研究进展和应用现状[J].有机硅材料,2023,37(4):75-80.
|
5 |
张建峰,王宁,刘峰,等.空心玻璃微珠制备技术及应用研究进展[J].中国粉体技术,2023,29(2):10-18.
|
6 |
刘文涛.玻璃微珠填充树脂基轻质复合材料制备及性能研究[J].纤维复合材料,2021,38(4):53-57.
|
7 |
王杰,郭行洪,王俊.玻璃微珠/环氧树脂复合泡沫材料的力学性能及其理论分析[J].材料科学与工程学报,2021,39(6):975-980.
|
8 |
王瑛,段景宽,杨小瑞,等.环氧树脂/空心玻璃微珠复合浮力材料制备及性能[J].工程塑料应用,2020,48(9):44-48, 55.
|
9 |
胡玉霞,杨红伟,李武胜.环氧树脂及其复合材料动态力学性能初步研究[J].高科技纤维与应用,2018,43(2):14-17.
|
10 |
刘佳园,杨明航,孙鲁振,等.中温固化热熔环氧树脂耐湿热性能研究[J].塑料工业,2022,50(9):55-61.
|
11 |
谢荣斌,薛静,陈实,等.环氧树脂的湿热老化特性研究[J].绝缘材料,2019,52(6):21-29.
|
12 |
王帮进.空心玻璃微珠增强聚丙烯材料的性能研究[J].合成材料老化与应用,2021,50(4):31-32, 70.
|
13 |
赵忠贤,丁晓波,高缘,等.三相轻质复合泡沫浮力材料的制备及性能研究[J].塑料科技,2019,47(3):53-58.
|
14 |
|
15 |
卢子兴,石上路,邹波,等.环氧树脂复合泡沫材料的压缩力学性能[J].复合材料学报,2005(4):17-22.
|
16 |
卢子兴,严寒冰,王建华,等.聚氨酯复合泡沫塑料的准静态压缩力学性能[J].中国塑料,2004,18(2):31-34.
|
17 |
卢子兴,王嵩,李忠明 等.空心微珠填充聚氨酯复合泡沫塑料的宏、细观力学性能[J].航空学报,2006(5):799-804.
|
18 |
李慧剑,梁希,何长军,等.空心玻璃微珠填充环氧树脂复合材料力学性能试验研究[J].燕山大学学报,2011,35(1):46-51.
|
19 |
李慧剑,张亚楠,梁希,等.玻璃微珠/环氧树脂胶结型复合材料的刚架-弹簧-阻尼模型[J].复合材料学报,2016,33(8):1710-1717.
|
20 |
余为,刘爽,李慧剑,等.玻璃纤维增强空心玻璃微珠/环氧树脂复合泡沫材料弹性常数分析[J].机械强度,2016,38(2):295-301.
|
21 |
余为,李慧剑,何长军,等.空心玻璃微珠填充环氧树脂复合材料力学性能[J].复合材料学报,2010,27(4):189-194.
|
22 |
余为,王亚东,张任良,等.碳纤维增强空心玻璃微珠/环氧树脂复合材料的力学性能[J].材料研究学报,2017,31(4):300-308.
|
23 |
|
24 |
|
25 |
|
26 |
梁希,李慧剑,余为,等.空心颗粒填充复合材料弹塑性力学行为模拟[J].固体力学学报,2013,34(1):73-82.
|
27 |
李苗苗,陈平,王辉,等.环氧树脂复合泡沫塑料的制备及其拉压性能[J].材料研究学报,2017,31(2):88-95.
|
28 |
李苗苗,陈平,李建超.粉煤灰微珠含量与粒径级配比对环氧树脂基复合材料弯曲性能的影响[J].复合材料学报,2017,34(2):345-351.
|
29 |
|
30 |
王海娇,李嘉禄.温度对碳纤维/环氧树脂层合复合材料压缩性能的影响[J].山东纺织科技,2013,54(5):54-56.
|
/
〈 |
|
〉 |