基于反演优化算法的钢丝-热熔胶黏结界面失效行为研究

胡俊岩, 程彪, 张剑, 刘文俊, 师俊

PDF(2143 KB)
PDF(2143 KB)
塑料科技 ›› 2024, Vol. 52 ›› Issue (06) : 77-83. DOI: 10.15925/j.cnki.issn1005-3360.2024.06.015
加工与应用

基于反演优化算法的钢丝-热熔胶黏结界面失效行为研究

作者信息 +

Study on Failure Behavior of Steel Wire-Adhesive Resin Interface Based on Inverse Optimization Algorithm

Author information +
History +

摘要

钢丝缠绕增强塑料复合管(PSP)综合性能优异,在石油、化工、供水等行业得到广泛应用。但在高温高压极端环境下,管材内部钢丝与热熔胶之间发生界面脱黏失效。为研究钢丝-热熔胶黏结界面失效行为,文章进行单钢丝/热熔胶试样的拉拔试验,建立与试验加载过程相一致的单钢丝拉拔有限元模型。基于内聚力理论模拟钢丝-热熔胶的黏结作用,依据反演优化计算思想,开发了ABAQUS-Python-MATLAB交互程序,实现每一轮拉拔力-位移计算曲线与试验曲线自动比对与界面参数的持续优化。通过反演得到的内聚力参数代入不同钢丝埋深的拉拔模型,其拉拔力峰值与对应位移的计算结果与试验结果良好吻合,反演所得参数可真实反映钢丝-热熔胶黏结作用。

Abstract

The steel wire winding reinforced plastic composite pipe (PSP) has excellent comprehensive performance and has been widely used in petroleum, chemical industry, water supply and other industries. However, in the extreme environment of high temperature and high pressure, the interface debonding failure occurs between the steel wire inside the pipe and the hot melt adhesive. In order to study the failure behavior of the bonding interface between steel wire and hot melt adhesive, the paper conducted a single steel wire/hot melt adhesive sample drawing test, established a single steel wire drawing finite element model consistent with the test loading process. Based on the cohesion theory to simulate the bonding effect between steel wire and hot melt adhesive, an ABAQUS-Python-MATLAB interactive program was developed according to the inverse optimization calculation concept, to achieve automatic comparison between each round of tensile force-displacement calculation curves and experimental curves, as well as continuous optimization of interface parameters. The inversion cohesion parameters were substituted into the drawing models with different buried depths. The calculation results of the peak value of the drawing force and the corresponding displacement were in good agreement with the test results. The inversion parameters can reflect the bonding effect of the wire and hot melt adhesive.

关键词

钢丝缠绕增强复合管 / 钢塑黏结界面 / 有限元模型 / 内聚力理论 / 反演计算

Key words

PSP / Steel-plastic interface / Finite element model / Cohesive / Iterative calculation

中图分类号

TB302

引用本文

导出引用
胡俊岩 , 程彪 , 张剑 , . 基于反演优化算法的钢丝-热熔胶黏结界面失效行为研究. 塑料科技. 2024, 52(06): 77-83 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.06.015
HU Jun-yan, CHENG Biao, ZHANG Jian, et al. Study on Failure Behavior of Steel Wire-Adhesive Resin Interface Based on Inverse Optimization Algorithm[J]. Plastics Science and Technology. 2024, 52(06): 77-83 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.06.015

参考文献

1
HUANG Y X, MENG X C, XIE Y M, et al. Friction stir welding/processing of polymers and polymer matrix composites[J]. Composites Part A: Applied Science and Manufacturing, 2018, 105: 235-257.
2
MAHESH V, JOLADARASHI S, KULKARNI S M. A comprehensive review on material selection for polymer matrix composites subjected to impact load[J]. Defence Technology, 2021, 17(1): 257-277.
3
ZHENG J Y, JUN S, SHI J F, et al. Short-term burst pressure of polyethylene pipe reinforced by winding steel wires under various temperatures[J]. Composite Structures, 2015, 121: 163-171.
4
ZHANG J, SHI J F, XU P. Investigation of interfacial debonding between steel wire and adhesive resin[J]. Journal of Applied Polymer Science, 2017, DOI: 10.1002/app.45064.
5
SHI J, LI Z, YU W, et al. Modeling the interfacial debonding behavior between steel wire and adhesive[J]. Journal of Pressure Vessel Technology, 2020, DOI: 10.1115/1.4047159.
6
WANG H X, ZHANG X H, DUAN Y G, et al. Experimental and numerical study of the interfacial shear strength in carbon fiber/epoxy resin composite under thermal loads[J]. International Journal of Polymer Science, 2018, DOI: 10.1155/2018/3206817.
7
GUO Q, YAO W J, LI W B, et al. Constitutive models for the structural analysis of composite materials for the finite element analysis: A review of recent practices[J]. Composite Structures, 2021, DOI: 10.1016/j.compstruct.2020.113267.
8
LIU P F, GU Z P, HU Z H. Revisiting the numerical convergence of cohesive-zone models in simulating the delamination of composite adhesive joints by using the finite-element analysis[J]. Mechanics of Composite Materials, 2016, 52(5): 1-14.
9
NIAN G D, LI Q Y, XU Q, et al. A cohesive zone model incorporating a Coulomb friction law for fiber-reinforced composites[J]. Composites Science and Technology, 2018, 157: 195-201.
10
ZOU Z M, LEE H. A cohesive zone model taking account of the effect of through-thickness compression[J]. Composites Part A: Applied Science and Manufacturing, 2017, 98: 90-98.
11
LI D, YANG Q S, LIU X, et al. Experimental and cohesive finite element investigation of interfacial behavior of CNT fiber-reinforced composites[J]. Composites Part A: Applied Science and Manufacturing, 2017, 101: 318-325.
12
LIU J X, LI J, WU B. The cohesive zone model for fatigue crack growth[J]. Advances in Mechanical Engineering, 2013(4): 409-414.
13
ZHAO G, XU J Q, FENG Y J, et al. A rate-dependent cohesive zone model with the effects of interfacial viscoelasticity and progressive damage[J]. Engineering Fracture Mechanics, 2021, DOI:10.1016/j.engfracmech.2021.107695.
14
陈志颖.基于内聚力模型的钢-铝接头结合界面强度研究[D].大连:大连理工大学,2020.
15
中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.纤维增强塑料复合材料 单向增强材料Ⅰ型层间断裂韧性GIC的测定[S].北京:中国标准出版社,2012.
16
DE MOURA M F S F, GONÇALVES J P M, CHOUSAL J A G, et al. Cohesive and continuum mixed-mode damage models applied to the simulation of the mechanical behaviour of bonded joints[J]. International Journal of Adhesion and Adhesives, 2008, 28(8): 419-426.
17
沈珉,于济菘,黄亚烽,等.一种实验与数值模拟相结合的内聚力区参数反解算法[J].实验力学,2016,31(6):751-762.
18
SOCKALINGAM S, MOUTUSHI D, GILLESPIE J W, et al. Finite element analysis of the microdroplet test method using cohesive zone model of the fiber/matrix interface[J]. Composites Part A Applied Science and Manufacturing, 2014, 56: 239-247.
19
ZHANDAROV S, ELENA P, MÄDER E. Is there any contradiction between the stress and energy failure criteria in micromechanical tests? Part Ⅲ. Experimental observation of crack propagation in the microbond test[J]. Journal of Adhesion Science and Technology, 2005, 19(8): 679-704.
20
PAPPAS G, CANAL L P, BOTSIS J, et al. Characterization of intralaminar mode I fracture of AS4/PPS composite using inverse identification and micromechanics[J]. Composites, Part A. Applied Science and Manufacturing, 2016, 91: 117-126.
21
WANG J, KANG Y L, QIN Q H, et al. Identification of time-dependent interfacial mechanical properties of adhesive by hybrid/inverse method[J]. Computational Materials Science, 2008, 43(4): 1160-1164.
22
XU Y J, LI X Y, WANG X G, et al. Inverse parameter identification of cohesive zone model for simulating mixed-mode crack propagation[J]. International Journal of Solids and Structures, 2014, 51(13): 2400-2410.
23
ZHOU Q C, CHEN X, NIU R M, et al. Extraction of rate-dependent fracture properties of adhesive interface involving large-scale yielding[J]. Journal of Adhesion Science and Technology, 2015, 29(11): 1118-1135.
24
KANG Y L, LIN X H, QIN Q H. Inverse/genetic method and its application in identification of mechanical parameters of interface in composite[J]. Composite Structures, 2004, 66(1/4): 449-458.
25
ZHOU Q C, JU Y T, WEI Z, et al. Cohesive zone modeling of propellant and insulation interface debonding[J]. Journal of Adhesion, 2013, DOI: 10.1080/00218464.2013.790773.
26
OH J C, KIM H G. Inverse estimation of cohesive zone laws from experimentally measured displacements for the quasi-static mode I fracture of PMMA[J]. Engineering Fracture Mechanics, 2013, 99(1): 118-131.
27
WANG J, QIN Q H, KANG Y L, et al. Viscoelastic adhesive interfacial model and experimental characterization for interfacial parameters[J]. Mechanics of Materials, 2010, 42(5): 537-547.
28
DSOUZA R, ANTUNES P, KAKKONEN M, et al. 3D interfacial debonding during microbond testing: Advantages of local strain recording[J]. Composites Science and Technology, 2020, DOI: 10.1016/j.compscitech.2020.108163.
29
TAMRAKAR S, RAJA G, SOCKALINGAM S, et al. Rate dependent mode Ⅱ traction separation law for S-2 glass/epoxy interface using a microdroplet test method[J]. Composites Part A: Applied Science and Manufacturing, 2019, DOI: 10.1016/j.compositesa.2019.105487.
30
MESSAOUD R B. Reduced nonlinear unknown inputs observer using mean value theorem and patternsearch algorithm[J]. Automatica, 2020, DOI: 10.1016/j.automatica.2019.108708.

基金

武汉市科技局应用基础前沿项目(2019010701011417)
智能复合管道系统开发(2019-KYY-533005-0001)
“雏鹰计划”培育项目资助(CY2022002)

评论

PDF(2143 KB)

Accesses

Citation

Detail

段落导航
相关文章

/