
糠醛-苯酚-甲醛共缩合树脂的制备与性能探究
李文琼, 姚佳琪, 范云鑫, 于朝生
糠醛-苯酚-甲醛共缩合树脂的制备与性能探究
Preparation and Property Investigation of Furfural-Phenol-Formaldehyde Co-Condensation Resin
为改善酚醛树脂在高温环境中耐酸性差的缺陷,对其进行改性。在以NaOH为催化剂条件下,使糠醛、苯酚和甲醛进行共同缩聚反应,制得热固性的糠醛-苯酚-甲醛树脂(FPF)。选用对甲苯磺酸为固化剂对合成的FPF进行固化,制备出FPF固化物。探究合成条件对FPF黏度、固含量和FPF固化物耐高温、耐强酸性能的影响。结果表明:当反应温度为95 ℃,催化剂用量为苯酚质量的6%,糠醛对甲醛的替代率为15%时,FPF黏度为1 200 mPa∙s,固含量为87.7%。对FPF固化物进行热失重测试,其在快速分解阶段的最大分解速率为2.883%/min,较传统酚醛树脂(PF)分解速率降低33.1%。FPF固化物经高温强酸环境处理后质量保留率为96.56%,相较PF固化物质量保留率提高6.44%。糠醛代替部分甲醛改性酚醛树脂提高了耐强酸性和热稳定性,使改性后的酚醛树脂可以在强酸、高温环境中应用。
Phenolic resin is modified to improve its defect of poor acid resistance in high temperature environment. Under the condition of alkaline catalyst, furfural, phenol and formaldehyde were subjected to co-polycondensation reaction to produce thermosetting furfural-phenol-formaldehyde co-polymerization resin (FPF). P-toluenesulfonic acid was selected as the curing agent for curing the synthesized FPF, and the FPF curing compounds were prepared. The effects of synthesis conditions on FPF viscosity, solid content, and high-temperature and strong-acid resistance of FPF cured products were investigated. The results showed that when the reaction temperature was 95 ℃, the amount of catalyst was 6% of the mass of phenol, and the replacement rate of furfural to formaldehyde was 15%, the viscosity of FPF was 1 200 mPa∙s, and the solid content was 87.7%. Thermal weight loss test of FPF cured material showed that its maximum decomposition rate was 2.883%/min in the rapid decomposition stage, which was 33.1% lower than the decomposition rate of conventional phenolic resin (PF). The mass retention of FPF cures treated with high temperature and strong acid environment was 96.56%, which was 6.44% higher compared to the mass retention of PF cures. Furfural as a substitute for part of the formaldehyde to modify phenolic resins has improved acid resistance and thermal stability, and the modified phenolic resins can be applied in environments with strong acids and high temperatures.
Phenolic resin / Furfural / Strong acid resistance / High temperatures resistance
TQ323.1
1 |
赵淑婷.木质素改性酚醛树脂制备及发泡研究[D].长春:吉林大学,2023.
|
2 |
杨凯,张啸梅,焦明立,等.高邻位热固性酚醛树脂的合成及其固化性能[J].热固性树脂,2020,35(5):10-15.
|
3 |
尹聪慧.酚醛树脂保温泡沫材料的制备研究[D].大连:大连工业大学,2021.
|
4 |
曹明. 酚醛树脂及苯酚-尿素-甲醛共缩聚树脂合成反应机理研究[D].南京:南京林业大学,2018.
|
5 |
王凯,刘凤霞,魏炜,等.木质素基酚醛树脂胶黏剂改性研究进展[J].热固性树脂,2020,35(4):61-66.
|
6 |
宫芸龙,刘乾,邓君霞,等.硅橡胶-硼酚醛树脂基轻质耐烧蚀隔热材料的性能(英文)[J].合成橡胶工业,2022,45(4):330.
|
7 |
党文婧.玄武岩纤维/硼酚醛树脂轻质复合材料设计制备与性能[D].绵阳:西南科技大学,2023.
|
8 |
张文涛,李昊,罗振华,等.硅氧烷改性线性酚醛的合成与性能研究[J].高分子通报,2014,10:77-85.
|
9 |
马榴强,周秀民,李晓林.酚醛树脂改性研究进展[J].塑料,2004(5):39-42, 94.
|
10 |
|
11 |
张鹏宇.低表面处理复合防腐材料制备及性能研究[D].济南:山东建筑大学,2023.
|
12 |
|
13 |
|
14 |
|
15 |
|
16 |
|
17 |
|
18 |
|
19 |
|
20 |
|
21 |
|
22 |
|
23 |
|
24 |
|
25 |
王超.四氢糠醇木质素酚醛树脂制备及其性能研究[D].马鞍山:安徽工业大学,2022.
|
26 |
|
27 |
|
28 |
|
29 |
|
/
〈 |
|
〉 |