干法缠绕用碳纤维复合材料耐压支撑管铺层优化设计

王业成, 王馨锐, 王晓宏, 刘长喜, 毕凤阳, 王云龙, 姜旭

PDF(1868 KB)
PDF(1868 KB)
塑料科技 ›› 2024, Vol. 52 ›› Issue (06) : 56-60. DOI: 10.15925/j.cnki.issn1005-3360.2024.06.011
加工与应用

干法缠绕用碳纤维复合材料耐压支撑管铺层优化设计

作者信息 +

Optimization Design of Carbon Fiber Reinforced Polymer Pressure-Resistant Support Pipe Layer for Dry Winding

Author information +
History +

摘要

碳纤维复合材料(CFRP)具有高刚度、高强度等优势,是进行轻量化结构设计的先进新型材料。铺层优化设计是CFRP制件结构设计的重要内容之一。基于ABAQUS对CFRP耐压支撑管铺层结构进行优化。确立以[(90°/±20°)5/90°/(±20°)9/90°/(±20°/90°)5]为最终铺层方案。采用干法缠绕成型工艺制备CFRP耐压支撑管,以有限元法和试验法对方案进行验证。结果表明:模拟分析CFRP耐压支撑管的抗压强度为817.4 MPa,抗压模量为167.7 GPa,对应的强度安全系数为1.84,模量安全系数为1.86。CFRP耐压支撑管的平均抗压强度为683.85 MPa,平均抗压模量为137.9 GPa,对应的强度安全系数为1.54,模量安全系数为1.53,均能够满足技术性能指标要求。

Abstract

Carbon fiber-reinforced polymers (CFRP), with their high stiffness and strength, are an advanced new material for lightweight structural design. Ply optimization design is one of the important aspects of the structural design of CFRP components. The layer structure of the CFRP pressure-resistant support pipe is optimized based on ABAQUS. [(90°/±20°)5/90°/(±20°)9/90°/(±20°/90°)5] was determined as the final layering scheme. The CFRP pressure-resistant support pipe was prepared by dry winding process, and the scheme was verified by finite element method and experimental method. The results show that the compressive strength of the CFRP pressure-resistant support pipe is 817.4 MPa, the compressive modulus is 167.7 GPa, the corresponding strength safety factor is 1.84, and the modulus safety factor is 1.86. The average compressive strength of the CFRP pressure-resistant support pipe is 683.85 MPa, the average compressive modulus is 137.9 GPa, the corresponding strength safety factor is 1.54, and the modulus safety factor is 1.53, which can meet the requirements of technical performance indicators.

关键词

干法缠绕成型 / 碳纤维复合材料 / 铺层设计 / 抗压性能

Key words

Dry winding forming / Carbon fiber reinforced polymer / Layer design / Compression resistance

中图分类号

TB301

引用本文

导出引用
王业成 , 王馨锐 , 王晓宏 , . 干法缠绕用碳纤维复合材料耐压支撑管铺层优化设计. 塑料科技. 2024, 52(06): 56-60 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.06.011
WANG Ye-cheng, WANG Xin-rui, WANG Xiao-hong, et al. Optimization Design of Carbon Fiber Reinforced Polymer Pressure-Resistant Support Pipe Layer for Dry Winding[J]. Plastics Science and Technology. 2024, 52(06): 56-60 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.06.011

参考文献

1
康超.预浸带缠绕成型筒形件关键性能建模及其工艺参数优化设计[D].西安:西北工业大学,2020.
2
冉旭东,黄树海,张鹏,等.连续纤维增强复合材料点阵结构成型工艺研究进展[J].材料导报,2023,37(19):247-258.
3
廖国峰,沈伟,张继涛,等.碳纤维用湿法缠绕成型工艺环氧树脂研究[J].化工新型材料,2021,49(8):101-105, 110.
4
YUAN Z K, HU J, HUANG Z W, et al. Non‐linearly conductive ZnO microvaristors/epoxy resin composite prepared by wet winding with polyester fibre cloth[J]. High Voltage, 2021, 7(1): 32-40.
5
阳泽濠,陶雷,戚亮亮,等.干法缠绕用碳纤维增强环氧树脂预浸纱线的设计及其性能研究[J].复合材料科学与工程,2022(3):87-95.
6
LI M Y, XIAO J, WANG X B, et al. Microwave curing kinetics of carbon-fiber-reinforced epoxy composites by wet filament winding process[J]. Polymer Composites, 2021, 42(8): 3969-3979.
7
王俊,李陈松,王涛,等.铺层结构(厚度)对玻璃纤维增强塑料排烟筒拉伸性能的影响[J].玻璃钢/复合材料,2018(11):83-86.
8
陈雯,徐艳英,李金都,等.铺层结构对碳纤维/环氧层压板火反应特性的影响[J].消防科学与技术,2021,40(6):809-812.
9
CZEL G, WISNOM M R. Demonstration of pseudo-ductility in high performance glass/epoxy composites by hybridisation with thin-ply carbon prepreg[J]. Composites Part A Applied Science&Manufacturing, 2013, 52(5): 23-30.
10
乔士杰,黎大胜,侯锐钢,等.铺层参数对混杂复合材料偏轴拉伸性能影响[J].广西大学学报:自然科学版,2017,42(1):327-336.
11
KE J, HE J, WU Z Y, et al. Fatigue reliability design of composite helical spring with nonlinear stiffness based on ply scheme design[J].Composite Structures, 2023, DOI: 10.1016/j.compstruct.2023.117119.
12
杜春志,傅博宇,邱致浩.某型低速飞机复合材料机翼的设计与有限元分析[J].机械设计, 2019,36(增刊2):55-58.
13
陈旦,祖磊,许家忠,等.干纱缠绕复合材料压力容器的结构设计与强度分析[J].玻璃钢/复合材料,2019(2):5-12, 44.
14
王静,路畅,邬盼盼,等.基于组合梁结构的复合材料机翼设计及验证[J].复合材料科学与工程,2023(7):50-56.
15
SAKIN R. Layup design optimization for e-glass woven roving fabric reinforced polyester composite laminates produced by VARTM[J]. Fibers and Polymers, 2021, 22(2): 1-19.
16
PENG X, WANG M B, YI B, et al. Optimization design of stacking sequence and material distribution for variable thickness hybrid composite structure based on improved stacking sequence table[J]. Composite Structures, 2023, DOI: 10.1016/j.compstruct.2022.116641.
17
滕凌虹,曹伟伟,朱波,等.ABAQUS在模拟弹丸高低速冲击金属和复合材料靶板方面的应用及研究进展[J].材料导报,2021,35(11):11146-11154.
18
李响,贾欲明,洪润民.Hashin准则的应力应变形式在复合材料渐进损伤计算中的对比[J].机械工程学报,2022,58(22):284-293.
19
唐旭辉,张顺琦,应申舜,等.复合材料螺栓连接结构的失效行为[J].上海大学学报:自然科学版,2019,25(4):502-515.
20
陈小辉,张珩,刘明月,等.开孔碳纤维复合材料层合板的拉伸失效有限元分析[J].东北大学学报:自然科学版,2022,43(3):397-403.
21
MAHREZ M A, MOSTAPHA T. A progressive damage modelling of glass/epoxy cylindrical structure subjected to low-velocity impact[J]. Engineering Failure Analysis, 2022, DOI: 10.1016/j.engfailanal.2022.106036.
22
熊信发,王校培,王坤,等.三维编织复合材料圆管轴向压缩性能及破坏机理[J].南京航空航天大学学报,2023,55(4):702-710.
23
DIDEM D. Numerical study of behavior of textile-reinforced composite tubes under lateral compression[J]. Mechanics Based Design of Structures and Machines, 2023, 51(7): 3738-3758.
24
王雪琴,张震东,马大为,等.碳纤维增强环氧树脂复合材料圆管多胞填充结构吸能特性的准静态压缩试验[J].复合材料学报,2021,38(9):2887-2896.
25
宋涛,余许多,江晟达,等.变刚度碳纤维/环氧树脂复合材料薄壁圆管轴向压溃响应与破坏机制[J].复合材料学报,2021,38(11):3586-3600.
26
王子健,周晓东.连续纤维增强热塑性复合材料成型工艺研究进展[J].复合材料科学与工程,2021(10):120-128.
27
罗恒,田井速,张靖宇.独立压力源热胀成型工艺在成型中空复合材料制件中的应用[J].材料科学与工程学报,2018,36(4):675-678.
28
宋晨曦,林海涛,赖恩平,等.碳纤维增强热塑性复合材料成型工艺的研究进展[J].纺织科学与工程学报,2023,40(4):86-93.
29
田春雷,皮爱国,黄风雷.CFRP复合材料层合圆筒轴向压缩试验与数值模拟[J].复合材料学报,2013,30(2):159-164.

基金

国家重点研发计划子课题“寒地特色果树产业关键技术研究与应用示范”(2022YFD1600502)
国防科技重点实验室开放基金课题(JCKYS2023603C022)
黑龙江省自然科学基金项目(LH2023E114)
2023黑龙江省属本科高校“优秀青年教师基础研究支持计划”(YQJH2023144)

评论

PDF(1868 KB)

Accesses

Citation

Detail

段落导航
相关文章

/