
聚丙烯基原位微纤复合材料研究进展
孙静, 李剑, 黄安荣, 李娟, 罗珊珊, 石敏, 梁兆华
聚丙烯基原位微纤复合材料研究进展
Research Progress of in-situ Microfibrillar Composites Based on Polypropylene
聚丙烯(PP)作为三大通用塑料之一,已被广泛应用于医疗、汽车、包装等领域。文章综述了近年来原位微纤技术在PP发泡材料、导电材料及增强增韧PP方面的研究进展。结果表明:通过在PP中原位形成微纤,可以提高PP的熔体强度,减少PP在发泡过程中泡孔合并,从而减小泡孔尺寸并提高泡孔密度,有效改善了PP的发泡性能;通过形成导电微纤网络结构可以有效的降低材料的逾渗阈值;原位形成的微纤可以显著提高PP的结晶能力,部分聚合物微纤还能诱导PP形成串晶结构,实现PP的增强增韧。同时,在相容剂的协同作用下,聚合物微纤对PP的增强及增韧效果更加明显。
Polypropylene (PP), as one of the three universal plastics, has been widely used in fields such as medical, automotive, and packaging, etc. The article reviewed the research progress of in-situ microfibrillar technology in PP foaming material, conductive material, and reinforcing and toughing PP in recent years. The results showed that by forming in-situ microfibrils in PP, the melt strength of PP can be improved, the merging of bubbles during the foaming process was reduced, the size of bubbles decreased and the density of bubbles increased, the foaming performance of PP was improved. By forming a conductive microfibrillar network structure in PP, the percolation threshold of PP composites can be effectively reduced. The in-situ formation of microfibrils can significantly improve the crystallization ability of PP, and some polymer microfibrils can induce the formation of shish kebab structure in PP, achieving reinforcement and toughening of PP, meawhile, under the synergistic effect of compatibilizers, its reinforcement and toughening effect on PP was more obvious.
In-situ microfibrillar / Polypropylene / Foaming / PET microfibrillar
TQ325.1+4
1 |
|
2 |
|
3 |
|
4 |
|
5 |
|
6 |
|
7 |
|
8 |
|
9 |
|
10 |
王富玉,郭金强,张玉霞.聚合物原位成纤方法及其在PP共混体系中的应用[J].中国塑料,2022,36(3):146-156.
|
11 |
曹永俊.PP基原位微纤化复合材料微孔化学发泡行为研究[D].郑州:郑州大学,2022.
|
12 |
|
13 |
韦良强,黄安荣,孙静,等.iPP/PET原位微纤复合材料的超临界二氧化碳发泡行为[J].高分子材料科学与工程,2018,34(7):66-71.
|
14 |
|
15 |
|
16 |
|
17 |
|
18 |
|
19 |
魏靖柠,贺建芸,申增强,等.PTFE原位成纤对 PP /MWCNTs/PTFE复合材料发泡性能和力学性能的影响[J].北京化工大学学报,2023,50(4):30-35.
|
20 |
张爱敏,王燕,王桂龙,等.超临界二氧化碳间歇式发泡工艺制备原位微纤增强聚丙烯泡沫[J].高分子材料科学与工程,2023,39(9):62-70.
|
21 |
|
22 |
|
23 |
|
24 |
|
25 |
|
26 |
|
27 |
|
28 |
|
29 |
朱钰婷,谷琳,何家隆,等.微纳层叠共挤PP/PA6/CNTs原位微纤复合膜的制备及性能研究[J].中国塑料,2021,35(10):1-7.
|
30 |
|
31 |
|
32 |
|
33 |
|
34 |
|
35 |
|
36 |
|
37 |
易新,王玉领,钟淦基,等.增容剂对PP/PET原位微纤化共混物的影响[J].中国塑料,2009,23(11):21-25.
|
38 |
|
39 |
|
40 |
|
41 |
黄英,何亚东,姜李龙,等.微纤形态结构对PP/PA66原位微纤复合材料流变性能的影响[J].高分子学报,2017,5:867-873.
|
42 |
姜林,曹尚刚,刘鸣飞,等.分散相含量对PP/PA66原位微纤复合材料微观形态和性能的影响[J].工程塑料应用,2023,51(1):22-27.
|
43 |
沈经纬,黄文艺,左胜武.PP/PA66原位复合材料的成纤性与力学性能[J].中国塑料,2002,16(12):27-31.
|
44 |
黎学东,陈鸣才,黄玉惠,等.PP/PA6原位成纤复合材料Ⅰ.形态与力学性能[J].复合材料学报,1998,15(2):57-61.
|
45 |
黎学东,陈鸣才,黄玉惠,等.PP/PA6原位成纤复合材料Ⅱ.加工条件对性能、形态的影响[J].复合材料学报,1998,15(2):62-67.
|
46 |
|
47 |
姜林,曹尚刚,刘鸣飞,等.增容剂含量对PP/PA66原位微纤复合材料微观形态和性能的影响[J].工程塑料应用,2023,51(7):38-44.
|
48 |
曹尚刚.PP/PA66原位微纤复合材料的制备和性能研究[D].北京:北京化工大学,2022.
|
49 |
王玉,孙文杰,马玉录,等.增容作用对PP/PA6原位微纤复合材料形貌及性能的影响[J].中国塑料,2021,35(5):1-5.
|
50 |
|
51 |
|
/
〈 |
|
〉 |