聚丙烯基原位微纤复合材料研究进展

孙静, 李剑, 黄安荣, 李娟, 罗珊珊, 石敏, 梁兆华

PDF(1890 KB)
PDF(1890 KB)
塑料科技 ›› 2024, Vol. 52 ›› Issue (05) : 145-150. DOI: 10.15925/j.cnki.issn1005-3360.2024.05.032
综述

聚丙烯基原位微纤复合材料研究进展

作者信息 +

Research Progress of in-situ Microfibrillar Composites Based on Polypropylene

Author information +
History +

摘要

聚丙烯(PP)作为三大通用塑料之一,已被广泛应用于医疗、汽车、包装等领域。文章综述了近年来原位微纤技术在PP发泡材料、导电材料及增强增韧PP方面的研究进展。结果表明:通过在PP中原位形成微纤,可以提高PP的熔体强度,减少PP在发泡过程中泡孔合并,从而减小泡孔尺寸并提高泡孔密度,有效改善了PP的发泡性能;通过形成导电微纤网络结构可以有效的降低材料的逾渗阈值;原位形成的微纤可以显著提高PP的结晶能力,部分聚合物微纤还能诱导PP形成串晶结构,实现PP的增强增韧。同时,在相容剂的协同作用下,聚合物微纤对PP的增强及增韧效果更加明显。

Abstract

Polypropylene (PP), as one of the three universal plastics, has been widely used in fields such as medical, automotive, and packaging, etc. The article reviewed the research progress of in-situ microfibrillar technology in PP foaming material, conductive material, and reinforcing and toughing PP in recent years. The results showed that by forming in-situ microfibrils in PP, the melt strength of PP can be improved, the merging of bubbles during the foaming process was reduced, the size of bubbles decreased and the density of bubbles increased, the foaming performance of PP was improved. By forming a conductive microfibrillar network structure in PP, the percolation threshold of PP composites can be effectively reduced. The in-situ formation of microfibrils can significantly improve the crystallization ability of PP, and some polymer microfibrils can induce the formation of shish kebab structure in PP, achieving reinforcement and toughening of PP, meawhile, under the synergistic effect of compatibilizers, its reinforcement and toughening effect on PP was more obvious.

关键词

原位微纤 / 聚丙烯 / 发泡 / PET微纤

Key words

In-situ microfibrillar / Polypropylene / Foaming / PET microfibrillar

中图分类号

TQ325.1+4

引用本文

导出引用
孙静 , 李剑 , 黄安荣 , . 聚丙烯基原位微纤复合材料研究进展. 塑料科技. 2024, 52(05): 145-150 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.05.032
SUN Jing, LI Jian, HUANG An-rong, et al. Research Progress of in-situ Microfibrillar Composites Based on Polypropylene[J]. Plastics Science and Technology. 2024, 52(05): 145-150 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.05.032

参考文献

1
PENUMAKALA P K, SANTO J, THOMAS A. A critical review on the fused deposition modeling of thermoplastic polymer composites[J]. Composites Part B: Engineering, 2020, DOI: 10.1016/j.compositesb.2020.108336.
2
YANG C, YAN K, WEN X, et al. Radiation grafting assisted preparation of layered structure polypropylene foam with superthermal insulation and hydrophobic properties via a supercritical co2 batch foaming process[J]. Industrial & Engineering Chemistry Research, 2021, 60(10): 3799-3808.
3
TADELE D, ROY P, DEFERSHA F, et al. A comparative life-cycle assessment of talc-and biochar- reinforced composites for lightweight automotive parts[J]. Clean Technologies and Environmental Policy, 2020, 22: 639-649.
4
WANG G, ZHAO G, DONG G, et al. Lightweight and strong microcellular injection molded PP/talc nanocomposite[J]. Composites Science and Technology, 2018, 168: 38-46.
5
ZHAO J, WANG G, WANG C, et al. Ultra-lightweight, super thermal-insulation and strong PP/CNT microcellular foams[J]. Composites Science and Technology, 2020, DOI: 10.1016/j.compscitech.2020.108084.
6
HHDIJI H, ASSARAR M, ZOUARI W, et al. Damping analysis of nonwoven natural fibre- reinforced polypropylene composites used in automotive interior parts[J]. Polymer Testing, 2020, DOI: 10.1016/j.polymertesting.2020.106692.
7
WANG K, WANG S, WU F, et al. A new strategy for preparation of long-chain branched polypropylene via reactive extrusion with supercritical CO2 designed for an improved foaming approach[J]. Journal of Materials Science, 2016, 51: 2705-2715.
8
LUO X, WU P, LAN B, et al. Coupling effects of toughening modification and solid die-drawing process on the morphology and mechanical properties of PP/TMB-5 composites with POE[J]. Journal of Polymer Research, 2021, 28: 1-15.
9
MORSHEDI F, TARASHI S, NAZOCKDAST H. Effect of multi-walled carbon nanotube localization on toughening mechanism and electrical properties of compatibilized PP/EOC immiscible blend[J]. Polymer Composites, 2023, 44(1): 650-662.
10
王富玉,郭金强,张玉霞.聚合物原位成纤方法及其在PP共混体系中的应用[J].中国塑料,2022,36(3):146-156.
11
曹永俊.PP基原位微纤化复合材料微孔化学发泡行为研究[D].郑州:郑州大学,2022.
12
MARK L H, ZHAO C, CHU R K M, et al. Mechanical properties of injection molded PP/PET-nanofibril composites and foams[J]. Polymers, 2022, DOI: 10.3390/polym14142958.
13
韦良强,黄安荣,孙静,等.iPP/PET原位微纤复合材料的超临界二氧化碳发泡行为[J].高分子材料科学与工程,2018,34(7):66-71.
14
WEI L, QI Y, SUN J, et al. Improving the foaming and mechanical properties of the in situ microfiber-reinforced polyethylene terephthalate/polypropylene composites through compatibilization[J]. Polymer Bulletin, 2017, 74: 4055-4068.
15
SUN J, LI Q, JIANG Y, et al. Lightweight and high impact toughness PP/PET/POE composite foams fabricated by in situ nanofibrillation and microcellular injection molding[J]. Polymers, 2023, 15(1): 227.
16
ZHANG Y, XIN C, WANG Z, et al. The foaming performance evaluation of fibrillated polytetrafluoroethylene and isotactic polypropylene blends[J]. Cellular Polymers, 2019, 38(3/4): 86-107.
17
LUO Y, XIN C, YANG Z, et al. Solid‐state foaming of isotactic polypropylene and its composites with spherical or fibrous poly (butylenes terephthalate)[J]. Journal of Applied Polymer Science, 2015, 132(15): 41801-41809.
18
ZHAO C X, MARK L H, CHANG E, et al. Highly expanded, highly insulating polypropylene/polybutylene-terephthalate composite foams manufactured by nano-fibrillation technology[J]. Materials & Design, 2020, DOI: 10.1016/j.matdes.2019.108450.
19
魏靖柠,贺建芸,申增强,等.PTFE原位成纤对 PP /MWCNTs/PTFE复合材料发泡性能和力学性能的影响[J].北京化工大学学报,2023,50(4):30-35.
20
张爱敏,王燕,王桂龙,等.超临界二氧化碳间歇式发泡工艺制备原位微纤增强聚丙烯泡沫[J].高分子材料科学与工程,2023,39(9):62-70.
21
ZHANG A, CHAI J, YANG C, et al. Fibrosis mechanism, crystallization behavior and mechanical properties of in-situ fibrillary PTFE reinforced PP composites[J]. Materials & Design, 2021, DOI: 10.1016/j.matdes.2021.110157.
22
ZHANG A, WANG J, WANG G, et al. Microcellular injection molded lightweight, strong and thermally insulating PP/fibrillated-PTFE composite foams with enhanced surface appearance[J]. Journal of Materials Research and Technology, 2023, 22: 2933-2943.
23
ZHAO J, WANG G, ZHU W, et al. Lightweight and strong polypropylene/talc/polytetrafluoroethylene foams with enhanced flame-retardant performance fabricated by microcellular foam injection foaming[J]. Materials & Design, 2022, DOI: 10.1016/j.matdes.2022.110539.
24
WANG G, ZHAO G, ZHANG L, et al. Lightweight and tough nanocellular PP/PTFE nanocomposite foams with defect-free surfaces obtained using in situ nanofibrillation and nanocellular injection molding[J]. Chemical Engineering Journal, 2018, 350: 1-11.
25
GARMABI H, NACICY S. Developing electrically conductive polypropylene/polyamide6/carbon black composites with microfibrillar morphology[J]. Journal of Applied Polymer Science, 2007, 106(5): 3461-3467.
26
NAFICY S, GARMABI H. Study of the effective parameters on mechanical and electrical properties of carbon black filled PP/PA6 microfibrillar composites[J]. Composites Science and Technology, 2007, 67(15/16): 3233-3241.
27
FARIMANI H E, EBRAHIMI N G. Morphology and electrical properties of carbon black/poly(ethylene terephthalate)/polypropylene composite[J]. Journal of Applied Polymer Science, 2012, 124(6): 4598-4605.
28
SUN X, YU Q, SHEN J, et al. In situ microfibrillar morphology and properties of polypropylene/polyamide/carbon black composites prepared through multistage stretching extrusion[J]. Journal of Materials Science, 2013, 48: 1214-1224.
29
朱钰婷,谷琳,何家隆,等.微纳层叠共挤PP/PA6/CNTs原位微纤复合膜的制备及性能研究[J].中国塑料,2021,35(10):1-7.
30
LIU Q, ZHANG X X, JIA D Z, et al. In situ nanofibrillation of polypropylene/polyethylene/poly(ethylene terephthalate) ternary system: A strategy of upgrade recycling[J]. Polymer, 2023, DOI: 10.1016/j.polymer.2023.125729.
31
KHAMSEH M, MAROUFKHANI M, MOGHANLOU S, et al. Development of sustainable cellulose-based composite of polypropylene reinforced by recycled microfibrillar poly(ethylene terephthalate)[J]. Polymer Composites, 2023, 44(10): 7058-7069.
32
LI Z M, LI L, SHEN K Z, et al. In situ poly(ethylene terephthalate) microfibers-and shear-induced non-isothermal crystallization of isotactic polypropylene by on-line small angle X-ray scattering[J]. Polymer, 2005, 46(14): 5358-5367.
33
ZHAO Z, YANG Q, KONG M, et al. Unusual hierarchical structures of micro-injection molded isotactic polypropylene in presence of an in situ microfibrillar network and a β-nucleating agent[J]. RSC Advances, 2015, 5(54): 43571-43580.
34
JAYANARAYANAN K, THOMAS S, Morphology JOSEPH K., static and dynamic mechanical properties of in situ microfibrillar composites based on polypropylene/poly(ethylene terephthalate) blends [J]. Composites Part A: Applied Science and Manufacturing, 2008, 39(2): 164-175.
35
JAYANARAYANAN K, THOMAS S, JOSEPH K. In situ microfibrillar blends and composites of polypropylene and poly(ethylene terephthalate): Morphology and thermal properties[J]. Journal of Polymer Research, 2011, 18: 1-11.
36
ZHAO Z, YANG Q, XIANG Z, et al. Effect of in situ poly(ethylene terephthalate)(PET) microfibrils on the morphological structure and crystallization behavior of isotactic polypropylene (iPP) under an intensive shear rate[J]. Polymers for Advanced Technologies, 2015, 26(10): 1275-1284.
37
易新,王玉领,钟淦基,等.增容剂对PP/PET原位微纤化共混物的影响[J].中国塑料,2009,23(11):21-25.
38
YI X, XU L, WANG Y L, et al. Morphology and properties of isotactic polypropylene/poly(ethylene terephthalate) in situ microfibrillar reinforced blends: Influence of viscosity ratio[J]. European Polymer Journal, 2010, 46(4): 719-730.
39
ZHAO C, ZHAO J, MARK L H, et al. A novel strategy of implementing coupling agents in micro/nano-fibrillated composites[J]. Polymer, 2023, DOI: 10.1016/j.polymer.2023.125837.
40
MI D, WANG Y, KUZMANOVIC M, et al. Effects of phase morphology on mechanical properties: Oriented/unoriented PP crystal combination with spherical/microfibrillar PET phase[J]. Polymers, 2019, DOI: 10.3390/polym11020248.
41
黄英,何亚东,姜李龙,等.微纤形态结构对PP/PA66原位微纤复合材料流变性能的影响[J].高分子学报,2017,5:867-873.
42
姜林,曹尚刚,刘鸣飞,等.分散相含量对PP/PA66原位微纤复合材料微观形态和性能的影响[J].工程塑料应用,2023,51(1):22-27.
43
沈经纬,黄文艺,左胜武.PP/PA66原位复合材料的成纤性与力学性能[J].中国塑料,2002,16(12):27-31.
44
黎学东,陈鸣才,黄玉惠,等.PP/PA6原位成纤复合材料Ⅰ.形态与力学性能[J].复合材料学报,1998,15(2):57-61.
45
黎学东,陈鸣才,黄玉惠,等.PP/PA6原位成纤复合材料Ⅱ.加工条件对性能、形态的影响[J].复合材料学报,1998,15(2):62-67.
46
CHENG L, WANG J. Crystallization and morphological and crystal structures of PP in an in situ microfibrillar composite of modified PA66 with PP[J]. Composites Science and Technology, 2018, 155: 205-212.
47
姜林,曹尚刚,刘鸣飞,等.增容剂含量对PP/PA66原位微纤复合材料微观形态和性能的影响[J].工程塑料应用,2023,51(7):38-44.
48
曹尚刚.PP/PA66原位微纤复合材料的制备和性能研究[D].北京:北京化工大学,2022.
49
王玉,孙文杰,马玉录,等.增容作用对PP/PA6原位微纤复合材料形貌及性能的影响[J].中国塑料,2021,35(5):1-5.
50
JIANG Y, WU J, LENG J, et al. Reinforced and toughened PP/PS composites prepared by Fused Filament Fabrication (FFF) with in-situ microfibril and shish-kebab structure[J]. Polymer, 2020, DOI: 10.1016/j.polymer.2019.121971.
51
SU J, MENG Y, ZHU F, et al. Simultaneously reinforce and toughen polypropylene by in-situ introducing polylactic acid microfibrils[J]. Polymers for Advanced Technologies, 2018, 29(5): 1469-1477.

基金

黔科合支撑[2022]一般224
国家自然科学基金(52063007)
黔科合平台人才-GCC[2022]043
黔科合服企[2021]9号

评论

PDF(1890 KB)

Accesses

Citation

Detail

段落导航
相关文章

/