
高压配电盒注塑成型优化分析
孙文革, 程莉, 雷皓, 王峰
高压配电盒注塑成型优化分析
Optimization Analysis of Injection Molding for High-Voltage Distribution Box
高压配电盒设计开发中,安装面的平面度直接影响安装精度、抗疲劳性能以及密封性能。针对某高压配电盒在初始工艺下安装面平面度不合格的问题,采用计算机辅助工程技术对其注塑成型过程进行模拟,并设计正交试验探究平面度的工艺优化方案。结果表明:保压时间对平面度的影响程度为极显著,料筒温度和模具表面温度对平面度的影响程度为显著,注射时间对平面度的影响程度为不显著。最优工艺参数组合为A2B3C1D3。优化工艺模拟验证结果显示:平面度由初始工艺的2.756 9 mm下降为1.532 9 mm,优化率达到44.4%,满足设计要求。充填过程、缩痕、熔接线及注射压力结果也均满足要求。采用优化工艺进行试模,样品外观及平面度合格,验证了此优化工艺的可行性。
In the design and development of high voltage distribution box, the flatness of installation surface directly affects the installation accuracy, anti-fatigue performance and sealing performance. Aiming at the problem that the flatness of the installation surface of a high voltage distribution box is unqualified under the initial process, the injection molding process was simulated by computer aided engineering technology, and the orthogonal test was designed to explore the process optimization scheme of flatness. The results show that the influence of holding time on flatness is extremely significant, the influence of barrel temperature and mold surface temperature on flatness is significant, and the influence of injection time on flatness is not significant. The optimum combination of process parameters is A2B3C1D3. The simulation results of the optimized process show that the flatness is reduced from 2.756 9 mm to 1.532 9 mm, and the optimization rate reaches 44.4%, which meets the design requirements. The filling process, shrinkage mark, welding line and injection pressure results also meet the requirements. The appearance and flatness of the samples are qualified by the optimized process, which verifies the feasibility of the optimized process.
High-voltage distribution box / Flatness / Orthogonal test / Optimization analysis
TQ320.66 / TP391.7
1 |
张绪彬,欧阳天琪.浅谈电动车高压配电盒选型设计[J].大众科技,2019,21(12):42-43, 41.
|
2 |
蔡德明,陈程,颜斌玉,等.具有多重保护功能高压配电盒设计[J].电子测试,2020(22):30-31.
|
3 |
李陵洲,刘诗,朱永军,等.汽车电器盒用耐候PBT/PC合金的开发及应用[J].塑料工业,2021,49(9):44-48.
|
4 |
朱腾.玻纤增强PBT材料的注塑成型工艺优化与应用[D].淮安:淮阴工学院,2021.
|
5 |
胡志刚,张作宁,郭海涛,等.硫酸钙晶须对PBT玻纤增强材料的翘曲改善研究[J].合成材料老化与应用,2022,51(1):22-23, 63.
|
6 |
杨晓云.计算机模拟技术在高分子材料注塑成型中的应用[J].合成树脂及塑料,2021,38(1):89-92.
|
7 |
赵永刚.注塑成型制品翘曲变形优化建模分析[J].精密成形工程,2022,14(3):154-157.
|
8 |
胡沛玮,齐洪方,王健伟.基于注塑成型工艺参数优化的电气控制盒低平面度设计[J].塑料科技,2021,49(7):85-90.
|
9 |
任晔.基于正交试验法的塑料AMT传感器注塑成型工艺优化[J].塑料科技,2023,51(3):79-83.
|
10 |
汪海涛.基于正交试验法的注塑成型参数优化[J].上海塑料,2019(2):58-62.
|
11 |
周俊杰,王桂芳.基于Moldflow的脸盆成型工艺参数优化[J].工业技术创新,2015,2(5):488-494.
|
12 |
田菲.基于模流分析软件的网格划分和网格修复[J].机械工程师,2018(11):72-74.
|
13 |
吴利明.借助CAE分析软件来设计最佳浇口位置[J].中国科技信息,2005(21):71.
|
14 |
赵振强,邓剑锋,肖新莉,等.电视机面壳热流道直接进胶模具设计[J].模具技术,2017(5):14-19, 27.
|
15 |
李金峰.基于正交试验的汽车挡板塑件注塑模具冷却系统的优化分析[J].内燃机与配件,2021(3):111-112.
|
16 |
唐佳丽,徐章韬.正交试验中的极差分析与方差分析[J].中学数学,2017(9):31-34.
|
17 |
喻永巽,张家峰,陈建武,等.基于正交试验法TPU材料3D打印参数的优化[J].机电工程技术,2023,52(5):128-130, 212.
|
18 |
庞龙凤.基于CAE汽车前灯注塑工艺参数的优化[D].杭州:浙江工业大学,2014.
|
19 |
朱晓东.电子刹车分泵壳注射成型质量分析及优化[J].模具制造,2022,22(8):43-47.
|
20 |
张海鹏.轿车头枕罩盖注塑研究与仿真分析[D].大连:大连交通大学,2022.
|
21 |
王德炤,范希营,刘欣,等.基于PSO-LSSVM和NSGA-Ⅱ的心电记录仪外壳注塑工艺优化[J].制造技术与机床,2022(6):147-152.
|
22 |
郑硕鵾.玻纤增强聚丙烯直接注射成型实验研究[D].北京:北京化工大学,2023.
|
/
〈 |
|
〉 |