蒙脱土/聚氨酯纳米复合材料降解的研究

李洪涛, 韦佳怡, 顾晓华, 刘家宝

PDF(1180 KB)
PDF(1180 KB)
塑料科技 ›› 2024, Vol. 52 ›› Issue (05) : 121-125. DOI: 10.15925/j.cnki.issn1005-3360.2024.05.027
生物与降解材料

蒙脱土/聚氨酯纳米复合材料降解的研究

作者信息 +

Degradation Studies of Montmorillonite/Polyurethane Nanocomposites

Author information +
History +

摘要

为达到节能环保,保护环境,实现对固废聚氨酯的研究与利用的目的。利用一缩二丙二醇(PG)和聚乙二醇(PEG)作为双组分二醇的醇解剂,碱金属氢氧化钠作为金属催化剂,蒙脱土(MMT)作为改性剂,利用降解产物重新制备出性能优异的蒙脱土/聚氨酯纳米复合材料,重新制备纳米泡沫材料。并对降解产物和纳米泡沫材料进行一系列测试和分析。结果表明:在m(PG)∶m(PEG)=40∶60,氢氧化钠为1.0 g,蒙脱土加入量为0.3 g时,聚氨酯纳米材料达到最好的降解效果,新制备的纳米泡沫材料的表观密度为0.05 g/cm3,抗压强度为0.41 MPa,此时的纳米泡沫材料导热系数更小,保冷性能更好,达到国家标准的要求。

Abstract

In order to achieve energy saving and environmental protection, the research and utilization of solid waste polyurethane is realized. Using monocomponent di-propylene glycol (PG) and polyethylene glycol (PEG) as the alcoholysis agent of the two-component diols, alkali metal sodium hydroxide as the metal catalyst, and montmorillonite clay (MMT) as the modifier, the degradation products were utilized to re-prepare montmorillonite/polyurethane nanocomposites with excellent performance, and to re-prepare nano-foam materials. And a series of tests and analyses were carried out on the degradation products and nanofoam materials. The results show that when m(PG): m(PEG) = 40:60, sodium hydroxide is 1.0 g, montmorillonite addition is 0.3 g, the polyurethane nanomaterials can achieve the best degradation effect, the apparent density of the newly prepared nano-foam material is 0.05 g/cm3, the compressive strength is 0.41 MPa. At this time, the nano-foam material has a smaller thermal conductivity and better cold-retaining performance, and meets the requirements of the national standard.

关键词

聚氨酯 / 金属催化剂 / 蒙脱土 / 降解 / 纳米复合材料

Key words

Polyurethane / Metal catalyst / Montmorillonite / Degradation / Nanocomposites

中图分类号

TQ328.3 / TB332

引用本文

导出引用
李洪涛 , 韦佳怡 , 顾晓华 , . 蒙脱土/聚氨酯纳米复合材料降解的研究. 塑料科技. 2024, 52(05): 121-125 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.05.027
LI Hong-tao, WEI Jia-yi, GU Xiao-hua, et al. Degradation Studies of Montmorillonite/Polyurethane Nanocomposites[J]. Plastics Science and Technology. 2024, 52(05): 121-125 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.05.027

参考文献

1
翁汉元.聚氨酯工业发展状况和技术进展[J].化学推进剂与高分子材料,2008,6(1):1-7.
2
张桐瑞,付豪,聂敏,等.固相剪切碾磨制备聚乳酸/蒙脱土纳米复合材料[J].塑料,2021,50(3):59-61, 82.
3
关天民,秦昊,王鑫林.热塑性聚氨酯弹性体防水外壳的研究[J].橡胶工业,2023,70(12):925-932.
4
REGHUNADHAN A, DATTA J, JAROSZEWSKI M, et al. Polyurethaneglycolysate from industrial waste recycling to develop low dielectric constant, thermally stable materials suitable for the electronics[J]. Arabian Journal of Chemistry, 2020, 13(1): 2110-2120.
5
谭寿再,孙永红,林嘉定,等.再生PVDF/蒙脱土纳米复合材料制备与性能[J].工程塑料应用,2020,48(5):46-51.
6
LIANG Y R, WANG Y Q, WU Y P, et al. Preparation and properties ofisobutylene G isoprene rubber (IIR)/clay nanocomposites[J]. Polymer Testing, 2005, 24(1): 12-17.
7
刘超,吴晓辉,卢咏来,等.片层钠基蒙脱土调控炭黑对天然橡胶/丁苯橡胶纳米复合材料性能的影响[J].橡胶工业,2023,70(4):251-259.
8
蒋玉湘,李再峰.蒙脱土/聚氨酯复合材料的制备及研究[J].实验室研究与探索,2022,41(6):48-52.
9
BYUNG K K, JANG W S, HAN M J. Morphology and properties of waterborne polyurethane /clay nanocomposites[J]. European Polymer Journal, 2003(39): 85-91.
10
BARICK A K, TRIPATHY D K. Nanostructure morphology and dynamic rheological properties of nanocomposites based on thermoplastic polyurethane and organically modified montmorillonite[J]. Polymer Bulletin, 2011(66): 1231-1253.
11
张丹丹.聚氨酯纳米复合材料的制备及其性能研究[D].无锡:江南大学,2019.
12
杨娟,王启强.蒙脱土/聚氨酯复合材料的制备与阻燃性能的研究[J].广州化工,2020,48(6):63-65.
13
顾晓华,罗鸿翔,吕士伟,等.双组分解交联剂对废旧PU硬泡回收再利用的影响研究[J].中国塑料,2019,33(5):89-93.
14
陈明,张晓华,顾晓华,等.废旧聚氨酯泡沫降解研究[J].齐齐哈尔大学学报:自然科学版,2022,38(6):60-64.
15
李果.PE/OMMT纳米复合电介质结构和介电性能的研究[D].淄博:山东理工大学,2019.
16
李晶.石墨烯抗静电聚氨酯充填材料的制备及性能研究[J].中国塑料,2018,32(5):116-119.
17
李伟锋,朱明浩,卢锦泽,等.废旧聚氨酯硬质泡沫塑料的化学微降解研究[J].广东石油化工学院学报,2017,27(4):26-29, 33.
18
KIM K K, KIM D J, KANG S H, et al. Detection of ethanol gas using In2O3 nanoparticle-decorated ZnS nanowires[J]. Sensors & Actuators: B. Chemical, 2017, DOI: 10.1016/j.snb.2017.03.120.
19
顾晓华,陈鹏,罗鸿翔,等.废旧聚氨酯泡沫催化降解的研究[J].化工新型材料,2022,50(8):117-120, 125.
20
许晓辰.硬质聚氨酯泡沫塑料的发展及应用[J].化工设计通讯,2020,46(3):3-4.
21
李红标.木质素酚醛树脂的合成及其发泡研究[D].郑州:郑州大学,2015.
22
Taheri S, Sadeghi G M M. Microstructure–property relationships of organo-montmorillonite/polyurethane nanocomposites: Influence of hard segment content[J]. Applied Clay Science, 2015, 114: 430-439.
23
向莹,刘全校,张勇,等.蒙脱土的改性方法及应用现状[J].北京印刷学院学报,2007(4):30-33.
24
黄志博,石艳,吴晓辉.蒙脱土有机改性研究进展[J].高分子通报,2021(10):1-10.
25
邢剑,叶争,徐珍珍,等.聚乳酸/蒙脱土纳米复合材料的制备与热学性能研究[J].安徽工程大学学报,2019,34(6):16-22, 27.
26
MAZROUEI-SEBDANI Z, BEGUM H, SCHOENWALD S, et al. A review on silica aerogel-based materials for acoustic applications[J]. Journal of Non-Crystalline Solids, 2021, DOI: 10.1016/j.jnoncrysol.2021.120770.
27
顾晓华,吕士伟,罗鸿翔,等.废旧硬质聚氨酯泡沫塑料的木质素改性及再生[J].化工环保,2019,39(4):447-451.
28
GU X H, CHEN P Q, WANG T, et al. Analysis of influencing factors in the preparation of mullite whiskers from recovering silicon-rich waste under low-temperature conditions[J]. Nanomaterials, 2023, DOI: 10.3390/nano13071143.
29
GU X H, ZHU Y W, LIU S W, et al. Analysis of the influencing factors of the efficient degradation of waste polyurethane and its scheme optimization[J]. Polymers, 2023, DOI: 10.3390/polym15102337.
30
GU X H, ZHU Y W, LIU S W, et al. Preparation of mullite/PU nanocomposites by double waste co-recycling[J]. Sustainability, 2022, DOI: 10.3390/su142114310.
31
GU X H, WANG X Y, WANG T, et al. Analysis of factors inflfluencing the effificiency of catalysts used in waste PU degradation [J]. Polymers, 2022, DOI: 10.3390/polym14245450.
32
GU X H, WANG X Y, GUO X Y, et al. Study and characterization of regenerated hard foam prepared by polyol hydrolysis of waste polyurethane[J]. Polymers, 2023, DOI: 10.3390/polym15061445.
33
王林艳,梁玉蓉,杨岚,等.烷基铵盐改性蒙脱土制备高气体阻隔性天然胶乳纳米复合材料[J].化工新型材料,2022,50(3):152-156.

评论

PDF(1180 KB)

Accesses

Citation

Detail

段落导航
相关文章

/