
PGA熔融改性PBAT共混物的制备与性能
罗开举, 丁枫
PGA熔融改性PBAT共混物的制备与性能
Preparation and Properties of PGA Reinforced PBAT Blends
为了探究聚乙醇酸(PGA)取代聚乳酸(PLA)在聚对苯二甲酸-己二酸丁二醇酯(PBAT)改性中的应用潜力,将PGA(质量分数0~25%)与PBAT进行双螺杆熔融共混,并分析共混物热学性能、力学性能、结晶性能、阻隔性能的变化规律。结果表明:PGA在共混体系中起成核剂和增强剂的作用,可以提高结晶温度、拉伸强度和弹性模量,降低结晶焓和热分解温度。PGA含量增加至25%,共混体系的维卡软化点达到89.4 ℃,热变形温度为41.6 ℃。共混体系的水蒸气/氧气的阻隔性能随着PGA含量的增加呈现出先降低后增加的趋势。然而,PGA含量增加至25%时,共混体系的断裂伸长率下降至221%。基于实验结论及相关文献资料,对比了25% PGA和25% PLA改性PBAT的性能。结果表明:25%PGA改性PBAT的力学性能和阻隔性能明显优于25% PLA改性的PBAT,M-25在0~90 d的工业堆肥降解率快于N-25,两者均符合工业堆肥降解标准。
In order to explore the potential application of poly(glycolic acid) (PGA) instead of poly(lactic acid) (PLA) in the modification of poly(terephthalic acid-butylene adipate) (PBAT), PGA (mass fractions 0~25%) and PBAT were blended by twin-screw melt blending, and the changes of thermal properties, mechanical properties, crystallization properties and barrier properties of the blends were analyzed. The results show that PGA acts as nucleating agent and reinforcing agent in the blend system, which can increase the crystallization temperature, tensile strength and elastic modulus, and decrease the crystallization enthalpy and thermal decomposition temperature. When the content of PGA increases to 25%, the Vicat softening point of the blend system reaches 89.4 ℃ and the hot deformation temperature reaches 41.6 ℃. With the increase of PGA content, the water vapor/oxygen barrier property of the blend system decreases at first and then increased. However, when the content of PGA increases to 25%, the elongation at break of the blend decreases to 221%. Based on the experimental results and related literature, the properties of 25% PGA and 25% PLA modified PBAT were compared. The results show that the mechanical properties and barrier properties of 25% PGA modified PBAT are significantly better than those of 25% PLA modified PBAT, and the degradation rate of M-25 is faster than that of N-25 in 0`90 days, both of which meets the degradation standard of industrial compost.
聚乙醇酸 / 聚对苯二甲酸-己二酸丁二醇酯 / 熔融共混 / 阻隔性能 / 生物降解性能
PGA / PBAT / Melt blending / Barrier performance / Biodegradability
TB332
1 |
|
2 |
王学军,孙大为,冯建立,等.可降解塑料评价标准现状与展望[J].塑料工业,2021,49(6):1-5, 89.
|
3 |
|
4 |
谢长琼,周元林,马佳俊.聚己内酯改性研究进展[J].塑料科技,2009,37(4):100-104.
|
5 |
邓春兰,应必仕,银锦国,等.聚乳酸改性和降解的研究进展[J].塑料科技,2022,50(3):100-103.
|
6 |
刘晓艳,涂志刚,赵素芬,等.可完全生物降解PBS的共混改性研究进展[J].塑料科技,2014,42(4):92-96.
|
7 |
|
8 |
朱东波,吴雄杰,陶强,等.PBAT作为食品用塑料自粘保鲜膜的食品安全性分析[J].塑料工业,2022,50(4):123-127.
|
9 |
|
10 |
|
11 |
刘佳祺.PBAT改性技术及其发展现状[J].炼油与化工,2023,34(5):13-17.
|
12 |
王志文,刘湘怡,代希阳,等.可生物降解塑料PBAT改性进展[J].塑料,2023,52(4):178-182.
|
13 |
|
14 |
|
15 |
|
16 |
|
17 |
|
18 |
|
19 |
|
20 |
|
21 |
钟维民,刘立鹏,魏志勇.生物可降解塑料聚乙醇酸的合成及其工业化研究进展[J].合成树脂及塑料,2021,38(2):80-84.
|
22 |
|
23 |
王子君,周炳,陈明明,等.高氧气阻隔性聚乙醇酸/乙烯-乙烯醇共聚物共混物的制备及性能[J].石油化工,2023,52(5):686-692.
|
24 |
孙苗苗,孙小杰,王荣,等.PBS增韧改性PGA共混物的制备及性能[J].塑料科技,2022,50(3):5-8.
|
25 |
董露茜,徐芳,翁云宣.聚乙醇酸改性及其应用研究进展[J].中国塑料,2022,36(4):166-174.
|
26 |
孙苗苗,尹甜,蒋志魁,等.PBAT/PGA共混材料制备及其发泡行为研究[J].塑料科技,2022,50(12):59-62.
|
27 |
肖大熙.中国石化织金50万吨/年PGA项目快速推进力争早日建成[J].当代贵州,2022(20):27-27.
|
28 |
钱振超,王睿,龚润东.聚乙醇酸的合成及其在生物医学领域的研究进展[J].塑料科技,2023,51(6):118-123.
|
29 |
殷妮.基于聚乙醇酸(PGA)的抗菌型空气过滤材料的制备及性能研究[D].苏州:苏州大学,2022.
|
30 |
葛一卓,赵文娜,张丛,等.耐高温聚乙醇酸缓速酸的制备与性能评价[J].油田化学,2023,40(3):394-400.
|
/
〈 |
|
〉 |