保温型聚氨酯/氢氧化镁复合材料力学性能和燃烧行为的研究

陈海霞, 洪学娣

PDF(780 KB)
PDF(780 KB)
塑料科技 ›› 2024, Vol. 52 ›› Issue (05) : 104-106. DOI: 10.15925/j.cnki.issn1005-3360.2024.05.023
加工与应用

保温型聚氨酯/氢氧化镁复合材料力学性能和燃烧行为的研究

作者信息 +

Study on Mechanical Properties and Combustion Behavior of Insulated Polyurethane/Magnesium Hydroxide Composites

Author information +
History +

摘要

用钛酸酯偶联剂对氢氧化镁(MH)进行改性,并制备聚氨酯/氢氧化镁(PU/MH)复合材料,研究了复合材料的力学性能和燃烧行为。结果表明:随着MH掺量增加,复合材料的压缩强度逐渐增大,复合材料的抗拉强度和弯曲变形逐渐降低。随着MH掺量增加,复合材料的点燃时间(TTI)和质量残余率(MLR)逐渐增大,总热释放量(THR)、总烟释放量(TSR)、CO生成量和CO2生成量逐渐降低,复合材料的燃烧等级从V-2提高到V-0。MH掺量为30%时,复合材料的力学性能和阻燃性能均较好。4#复合材料的抗压强度比纯PU提高45.0%,抗拉强度和弯曲变形分别降低10.0%和5.3%,燃烧等级从V-2提高到V-0,CO和CO2总生成量分别降低50.0%和22.2%。

Abstract

Polyurethane/magnesium hydroxide (PU/MH) composites were prepared by modifying magnesium hydroxide (MH) with titanate coupling agent. The mechanical properties and combustion behavior of the composites were studied. The results show that with the increase of MH content, the compressive strength of the composites increases gradually, and the tensile strength and bending deformation of the composites decrease gradually. With the increase of MH content, the ignition time (TTI) and mass residual rate (MLR) of the composites increase gradually, the total heat release (THR), total smoke release (TSR), CO generation and CO2 generation of the composites decrease gradually, and the combustion grade of the composites increases from V-2 to V-0. When the MH content is 30%, the mechanical properties and flame retardancy of 4# composite are good. Compared with pure PU, the compressive strength of 4# composite is increased by 45.0%, the tensile strength and bending deformation are decreased by 10.0% and 5.3%, respectively, the combustion grade increases from V-2 to V-0, and the total CO and CO2 production are decreased by 50.0% and 22.2% respectively.

关键词

氢氧化镁 / 聚氨酯 / 力学性能 / 燃烧行为

Key words

Magnesium hydroxide / Polyurethane / Mechanical properties / Combustion behavior

中图分类号

TB332

引用本文

导出引用
陈海霞 , 洪学娣. 保温型聚氨酯/氢氧化镁复合材料力学性能和燃烧行为的研究. 塑料科技. 2024, 52(05): 104-106 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.05.023
CHEN Hai-xia, HONG Xue-di. Study on Mechanical Properties and Combustion Behavior of Insulated Polyurethane/Magnesium Hydroxide Composites[J]. Plastics Science and Technology. 2024, 52(05): 104-106 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.05.023

参考文献

1
肖力光,俞毅,王文彬.硬质聚氨酯泡沫保温材料泡孔结构的研究[J].吉林建筑工程学院学报,2014,31(2):15-18.
2
刘李.无卤阻燃型硬质聚氨酯泡沫塑料的制备与性能研究[D].厦门:厦门大学,2013.
3
矫立超,戎贤,孔祥飞,等.聚氨酯泡沫在节能建筑中的应用[J].工程塑料应用,2019,47(3):140-144.
4
井龙卿,兰小凯,王飞.聚氨酯发泡材料应用在汽车上的工艺研究[J].现代涂料与涂装,2018,21(10):67-69.
5
齐明思,强志鹏,张伟,等.泡沫铝-聚氨酯的制备及其吸能特性分析[J].包装工程,2018(23):81-87.
6
张强,张卓,杨威,等.结构型阻燃聚氨酯硬质泡沫研究进展[J].化工新型材料,2019(9):211-214.
7
霍治澎.膨胀石墨对建筑保温用改性聚氨酯材料性能的影响[J].塑料工业,2019,47(4):101-104.
8
何云.氮-磷协同阻燃聚氨酯保温材料性能研究[J].新型建筑材料,2020,47(5):86-89, 95.
9
杨洋,杨超,覃峰.硬质聚氨酯隔热泡沫材料的制备及其阻燃性能研究[J].塑料科技,2022(2):43-46.
10
姜浩浩,王丽,刘新亮,等.三聚氰胺氰尿酸盐阻燃聚氨酯硬泡[J].塑料,2020,49(2):18-22.
11
翟金国,肖雄,胡爽,等.阻燃聚氨酯保温材料性能研究[J].建筑节能,2015,43(11):40-44.
12
陈晓浪,于杰,郭少云,等.表面改性对聚丙烯/纳米氢氧化镁复合材料性能的影响[J].高分子材料科学与工程,2010,22(5):170-174.
13
殷海青,李国珍,祁正兴.阻燃型氢氧化镁在聚苯乙烯中的应用[J].应用化工,2018,47(6):1314-1316.
14
张红霞,苏桂仙,张宁,等.氢氧化镁表面改性及在高密度聚乙烯中的应用[J].工程塑料应用,2018,46(7):117-121.
15
彭鹤松,吴维冰,邱文福,等.超细氢氧化镁在PVC压延膜中应用[J].工程塑料应用,2021,49(10):143-147.
16
周波,张健,李旭,等.纳米复合材料Mg(OH)2/EVA结构及性质研究[J].河北师范大学学报:自然科学版,2019,43(2):141-146.
17
董嘉更,牛睿祺,刘继纯,等.聚苯乙烯/纳米氢氧化镁复合材料的结构和燃烧行为研究[J].塑料科技,2010,38(10):35-39.
18
郑军昌,李智丽,严文超.膨胀石墨/氢氧化镁协同改性通信电缆用聚氨酯复合材料的研究[J].塑料科技,2023,51(8):33-36.
19
张玉洲,李梅英,童龙学,等.氢氧化镁阻燃剂在PU合成革中的应用[J].西部皮革,2018,40(9):34-36.
20
陈丁猛.无卤阻燃聚氨酯泡沫的制备与性能[D].天津:天津工业大学,2011.
21
陶君.氢氧化镁粒径对阻燃聚乙烯复合材料性能的影响[J].塑料科技,2022,50(10):65-69.

评论

PDF(780 KB)

Accesses

Citation

Detail

段落导航
相关文章

/