石墨烯微纳片复合密封垫铺叠热压成型工艺及性能

杨楠, 万泉, 黄元, 谭静, 吴海华

PDF(1939 KB)
PDF(1939 KB)
塑料科技 ›› 2024, Vol. 52 ›› Issue (05) : 90-94. DOI: 10.15925/j.cnki.issn1005-3360.2024.05.019
加工与应用

石墨烯微纳片复合密封垫铺叠热压成型工艺及性能

作者信息 +

Laminated Hot Press Molding Process and Performance of Graphene Micro-nano Sheets Composite Sealing Gasket

Author information +
History +

摘要

密封材料在机械电力、石油化工领域具有广泛的应用,是防止发生泄漏和维护设备正常运行的重要基础元件。石墨烯微纳片因其具有良好的导热性、耐腐蚀性和力学性能,成为关键密封材料之一。实验以石墨烯微纳片为主要填料,以酚醛树脂(PF)和聚乙烯醇缩丁醛(PVB)为黏结剂,结合流延成型和堆叠热压成型技术,分别研究了石墨烯微纳片的含量、黏结剂比例和热压成型压力对复合密封垫的抗拉强度、压缩率和回弹率的影响,探索了石墨烯微纳片复合密封垫的铺叠热压成型工艺。结果表明:当石墨烯微纳片含量为55%、PF/PVB质量比为8∶15、成型压力为15 MPa、成型温度为120 ℃、保温时间为30 min时,石墨烯微纳片复合密封垫具有最佳的成型工艺性和性能,可制备满足质量要求的石墨烯微纳片复合密封垫。

Abstract

Sealing materials have a wide range of applications in the fields of mechanical power and petrochemicals, they are important basic components for preventing leaks and maintaining the normal operation of equipment. Graphene micro-nano sheets have become one of the key sealing materials due to their excellent thermal conductivity, corrosion resistance, and mechanical properties. This article mainly uses graphene micro-nano sheets as the main filler, phenolic resin (PF) and polyvinyl butyral (PVB) as binders, combined with tape casting and hot pressing technology, to study the effects of graphene micro-nano sheets content, binder ratio, and hot pressing pressure on the tensile strength, compression rate, and rebound rate of composite sealing gaskets, and explore the hot pressing and laminated object manufacturing process of graphene micro-nano sheets composite sealing gaskets. The results show that when the content of graphene micro-nano sheets is 55%, the PF/PVB mass ratio is 8∶15, the molding pressure is 15 MPa, the molding temperature is 120 ℃, and the insulation time is 30 min, the graphene micro-nano sheets composite sealing gasket has the best molding processability and property, which can be prepared to meet the quality requirements of graphene micro-nano sheets composite sealing gaskets.

关键词

石墨烯微纳片 / 复合密封垫 / 铺叠 / 热压成型

Key words

Graphene micro nano sheet / Composite sealing gasket / Laminated / Hot press molding

中图分类号

TQ323.1 / TH145

引用本文

导出引用
杨楠 , 万泉 , 黄元 , . 石墨烯微纳片复合密封垫铺叠热压成型工艺及性能. 塑料科技. 2024, 52(05): 90-94 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.05.019
YANG Nan, WAN Quan, HUANG Yuan, et al. Laminated Hot Press Molding Process and Performance of Graphene Micro-nano Sheets Composite Sealing Gasket[J]. Plastics Science and Technology. 2024, 52(05): 90-94 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.05.019

参考文献

1
HUANG T C, LIN C Y, LIAO K C. Sealing performance assessments of PTFE rotary lip seals based on the elasto-hydrodynamic analysis with the modified archard wear model[J]. Tribology International, 2022, DOI: 10.1016/j.triboint.2022.107917.
2
石立民,杜有超,张望远,等.盾构隧道复合式密封垫低温性能试验研究[J].施工技术(中英文),2023,52(21):130-136.
3
ZHAI C, HAO Z Y, LIN B Q. Research on a new composite sealing material of gas drainage borehole and its sealing performance[J]. Procedia Engineering, 2011, 26: 1406-1416.
4
冯雪玉.换流阀内冷水系统腐蚀行为研究[D].北京:华北电力大学,2018.
5
李湘洲,邢俊清.我国柔性石墨密封材料的现状与发展趋势[J].新型碳材料,1994(4):10-14, 4.
6
陈俞国.特高压换流阀内冷主泵机械密封渗漏原因及对策[J].低碳世界,2022,12(4):40-42.
7
何运华,冯雪玉,何潇,等.直流输电换流阀腐蚀机理研究进展[J].广东化工,2016,43(22):116-117.
8
黄宇广.电力设备密封圈橡胶材料寿命评估分析[J].机电信息,2020(3):77-81, 83.
9
颜星星,杨勇,刘元杰,等.发动机缸盖用冲刺复合垫片性能研究[J].液压气动与密封,2023,43(2):111-115.
10
谢苏江,谢文谦.石墨烯/聚四氟乙烯复合密封材料的制备及性能研究[J].润滑与密封,2018,43(9):104-107, 140.
11
HUANG T C, LIN C Y, LIAO K C. Experimental and numerical investigations of the wear behavior and sealing performance of PTFE rotary lip seals based on the elasto-hydrodynamic analysis with considerations of the asperity contact[J]. Tribology International, 2023, DOI: 10.1016/j.triboint.2023.108747.
12
王乐勤,杨晖,励行根,等.柔性石墨密封垫片的研究现状及发展趋势[J].流体机械,2013,41(6):37-41, 78.
13
张江锋.柔性石墨复合密封材料制品的物理性能和力学性能研究[J].造纸装备及材料,2020,49(3):60.
14
AMIR A, MAHALINGAM S, WU X, et al. Graphene nanoplatelets loaded polyurethane and phenolic resin fibres by combination of pressure and gyration[J]. Composites Science and Technology, 2016, 129: 173-182.
15
CHOI J, OKIMURA N, YAMADA T, et al. Deposition of graphene-copper composite film by cold spray from particles with graphene grown on copper particles[J]. Diamond and Related Materials, 2021, DOI: 10.1016/j.diamond.2021.108384.
16
CHEN Z, JIN L, HAO W, et al. Synthesis and applications of three-dimensional graphene network structures[J]. Materials Today Nano, 2019, DOI: 10.1016/j.mtnano.2019.01.002.
17
RAO C N R, SOOD A K, SUBRAHMANYAM K S, et al. Graphene: the new two-dimensional nanomaterial[J]. Angewandte Chemie, 2009, 48(42): 7752-7777.
18
范雪婷,张从阳,罗烨,等.石墨烯复合微粒群喷射成型行为模拟与实验研究[J].炭素技术,2019,38(6):17-23.
19
吴海华,郝佳欢,魏恒,等.人造石墨粉末微热压增材成形工艺[J].材料热处理学报,2023,44(10):68-77.
20
李厅,吴海华,杜超,等.细鳞片石墨复合密封板铺叠成形制造[J].山东工业技术,2015(4):34.
21
吴海华,李厅,黄川,等.细鳞片石墨复合密封板材的制备及性能[J].机械工程材料,2015,39(6):36-39.
22
蔡伟金,李青,刘耀,等.流延制备有序排列石墨烯增韧氧化锆陶瓷的结构与力学性能[J].粉末冶金材料科学与工程,2020,25(2):104-111.
23
殷小明.基于石墨制垫片的密封性能研究进展[J].西部特种设备,2023,6(1):66-72, 78.
24
HUANG Y Y, CHOU K S. Studies on the spin coating process of silica films[J]. Ceramics International, 2002, 29(5): 485-493.
25
IDOWU A, BOESL B, AGARWAL A. 3D graphene foam-reinforced polymer composites—A review[J]. Carbon, 2018, 135: 52-71.
26
周建民,王亚东,王双喜,等.制备电子陶瓷基片用的流延成型工艺[J].硅酸盐通报,2010,29(5):1114-1118.
27
LI J H, JI H M, LI A D, et al. Carbonized foams from graphene/phenolic resin composite aerogels for superior electromagnetic wave absorbers[J]. Ceramics International, 2021, 47(18): 26082-26091.
28
贺俊超.石墨/碳化硅复合隔热材料微热压增材制造及其性能研究[D].宜昌:三峡大学,2022.
29
吴海华,钟磊,贺俊超,等.天然鳞片石墨粉末的微热压成形工艺[J].材料热处理学报,2022,43(3):160-167.
30
欧阳雪琼,黎达,孙国立,等.陶瓷材料流延成型工艺的研究进展[J].佛山陶瓷,2023,33(2):1-4, 31.

基金

国网湖北直流公司科技项目(SDHZ20230359)

评论

PDF(1939 KB)

Accesses

Citation

Detail

段落导航
相关文章

/