基于剪切蠕变回复测试的iPP/ABS共混物相容性评价

刘晶如, 朱鑫旭

PDF(2082 KB)
PDF(2082 KB)
塑料科技 ›› 2024, Vol. 52 ›› Issue (05) : 85-89. DOI: 10.15925/j.cnki.issn1005-3360.2024.05.018
加工与应用

基于剪切蠕变回复测试的iPP/ABS共混物相容性评价

作者信息 +

Compatibility Evaluation of iPP/ABS Blends Based on Shear Creep Recovery Test

Author information +
History +

摘要

相容性的表征是高分子共混改性的重要研究内容。常用的流变学表征方法主要基于动态频率扫描测试,而低频区的测试通常需要耗费较长的实验时间。以等规聚丙烯(iPP)/丙烯腈-丁二烯-苯乙烯接枝共聚物(ABS)共混物为研究对象,利用旋转流变仪的剪切蠕变回复模式评价高分子共混物的相容性,借助扫描电镜测试以进一步验证剪切蠕变回复测试得到的结论。结果表明:对于不同相形态的iPP/ABS不相容共混物,蠕变可回复柔量(J r)显示出不同的现象。具有双连续相的共混物J r值最大,而具有海-岛相结构的共混物的J r值介于双连续相共混物与纯组分的J r值之间。分别选用聚丙烯接枝马来酸酐(PP-g-MAH)和苯乙烯-乙烯-丁烯-苯乙烯嵌段共聚物(SEBS)为相容剂,增容后的iPP/ABS共混物的J r值明显小于纯组分。该测试耗时相对较短,可以替代常见的表征方法来快速评价高分子共混物的相容性。

Abstract

The characterization of compatibility is the key research content of polymer blending modification. The commonly used rheological characterization methods are mainly based on dynamic frequency scanning tests, while the tests in the low frequency region usually take long experimental time. Isotactic polypropylene (iPP)/acrylonitrile-butadiene-styrene graft copolymer (ABS) blends were investigated. The shear creep recovery mode of rotary rheometer was utilized to evaluate the compatibility of polymer blends. The obtained conclusions were further verified by using scanning electron microscopy. The results show that for incompatible iPP/ABS blends with different phase morphology, creep recoverable compliance (J r) exhibits different phenomena. The blends with co-continuous morphology show the highest creep recoverable compliance, while the J r values of the blends with sea-island morphology are between those of the blends with co-continuous morphology and the pure components. When maleic anhydride grafted polypropylene (PP-g-MAH) and styrene-ethylene-butylene-styrene block copolymer (SEBS) were selected as compatibilizers, respectively, the J r values of the compatibilized iPP/ABS blends are significantly lower than those of the pure components. This test is relatively short in time and could replace the common characterization methods to quickly evaluate the compatibility of polymer blends.

关键词

剪切蠕变回复 / 相容性 / 等规聚丙烯 / 丙烯腈-丁二烯-苯乙烯接枝共聚物

Key words

Shear creep recovery / Compatibility / iPP / ABS

中图分类号

TQ317

引用本文

导出引用
刘晶如 , 朱鑫旭. 基于剪切蠕变回复测试的iPP/ABS共混物相容性评价. 塑料科技. 2024, 52(05): 85-89 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.05.018
LIU Jing-ru, ZHU Xin-xu. Compatibility Evaluation of iPP/ABS Blends Based on Shear Creep Recovery Test[J]. Plastics Science and Technology. 2024, 52(05): 85-89 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.05.018

参考文献

1
FENOUILLOT F, CASSAGNAU P, MAJESTÉ J C. Uneven distribution of nanoparticles in immiscible fluids: Morphology development in polymer blends[J]. Polymer, 2009, 50(6): 1333-1350.
2
ZHAO H, CUI Z, SUN X, et al. Morphology and properties of injection molded solid and microcellular polylactic acid/polyhydroxybutyrate-valerate (PLA/PHBV) blends[J]. Industrial and Engineering Chemistry Research, 2013, 52(7): 2569-2581.
3
LIU J R, ZHU X X, CAO Z. Poly(acrylonitrile-butadiene-styrene) as a special β-nucleating agent on the toughness of isotactic polypropylene[J]. Polymers, 2019, DOI: 10.3390/polym11111894.
4
MAHDI E M, TAN J C. Dynamic molecular interactions between polyurethane and ZIF-8 in a polymer-MOF nanocomposite: Microstructural, thermo-mechanical and viscoelastic effects[J]. Polymer, 2016, 97: 31-43.
5
LIU J R, ZHU X X. Isotactic polypropylene toughened with poly (acrylonitrile-butadiene-styrene): Compatibilizing role of nano-ZnO[J]. Polymer-Plastics Technology and Materials, 2019, 58(18): 2007-2018.
6
LYU Y, PANG J, GAO Z, et al. Characterization of the compatibility of PVC/PLA blends by aid of rheological responses[J]. Polymer, 2019, 176: 20-29.
7
DENG Y, MAO X, LIN J, et al. Compatibilization of polypropylene/poly(acrylonitrile-butadiene-styrene) blends by polypropylene-graft-cardanol[J]. Journal of Applied Polymer Science, 2015, DOI: 10.1002/app.41315.
8
KHARE R A, BHATTACHARYYA A R, KULKARNI A R. Melt-mixed polypropylene/acrylonitrile-butadiene-styrene blends with multiwall carbon nanotubes: Effect of compatibilizer and modifier on morphology and electrical conductivity[J]. Journal of Applied Polymer Science, 2011, 120(5): 2663-2672.
9
TRIANTOU M I, GAVRIEL M, SAKELLARIS P, et al. The effect of compatibilizers and organically modified nanoclay on the morphology and performance properties of poly(acrylonitrile-butadiene-styrene)/polypropylene blends[J]. Polymer Engineering and Science, 2016, 56(4): 458-468.
10
KUM C K, SUNG Y T, KIM Y S, et al. Effects of compatibilizer on mechanical, morphological, and rheological properties of polypropylene/poly(acrylonitrile-butadiene-styrene) blends[J]. Macromolecular Research, 2007, 15(4): 308-314.
11
LEE Y K, LEE J B, PARK D H, et al. Effects of accelerated aging and compatibilizers on the mechanical and morphological properties of polypropylene and poly(acrylonitrile-butadiene-styrene) blends[J]. Journal of Applied Polymer Science, 2013, 127(2): 1032-1037.
12
SUNG Y T, KIM Y S, LEE Y K, et al. Effects of clay on the morphology of poly(acrylonitrile-butadiene-styrene) and polypropylene nanocomposites[J]. Polymer Engineering and Science, 2007, 47(10): 1671-1677.
13
HOM S, BHATTACHARYYA A R, KHARE R A, et al. PP/ABS blends with carbon black: Morphology and electrical properties[J]. Journal of Applied Polymer Science, 2009, 112(2): 998-1004.
14
KHARE R A, BHATTACHARYYA A R, KULKARNI A R, et al. Influence of multiwall carbon nanotubes on morphology and electrical conductivity of PP/ABS blends[J]. Journal of Polymer Science Part B: Polymer Physics, 2008, 46(21): 2286-2295.
15
LUO Z, LU Q, MA F, et al. The effect of graft copolymers of maleic anhydride and epoxy resin on the mechanical properties and morphology of PP/ABS blends[J]. Journal of Applied Polymer Science, 2014, DOI: 10.1002/app.40898.
16
BONDA S, MOHANTY S, NAYAK S K. Influence of compatibilizer on mechanical, morphological and rheological properties of PP/ABS blends[J]. Iranian Polymer Journal, 2014, 23(6): 415-425.
17
刘晶如,俞强,朱梦冰.旋转流变仪在高分子物理教学实验中的应用[J]. 实验技术与管理,2014(4):93-95.
18
SONG Y, ZHENG Q. Concepts and conflicts in nanoparticles reinforcement to polymers beyond hydrodynamics[J]. Progress in Materials Science, 2016, 84: 1-58.
19
SHEN W, HE P, YU W, et al. Effect of mesophase separationon the compatibility of iPP/olefin block copolymer blends[J]. Acta Polymerica Sinica, 2014, 88(8): 1116-1123.
20
王艳色,唐萍,李战胜,等.表征聚合物共混体系相容性的流变学方法[J].高分子通报,2021(10):79-85.
21
GRAMESPACHER H, MEISSNER J. Reversal of recovery direction during creep recovery of polymer blends[J]. Journal of Rheology, 1995, 39(1): 151-160.
22
PAN Y, LIU X, KASCHTA J, et al. Reversal phenomena of molten immiscible polymer blends during creep-recovery in shear[J]. Journal of Rheology, 2017, 61(4): 759-767.
23
MÜNSTEDT H. Rheological experiments at constant stress as efficient method to characterize polymeric materials[J]. Journal of Rheology, 2014, 58(3): 565-587.
24
PAN Y, LIU X, HAO X, et al. Enhancing the electrical conductivity of carbon black-filled immiscible polymer blends by tuning the morphology[J]. European Polymer Journal, 2016, 78: 106-115.
25
OKAMOTO K, ICHIKAWA T, YOKOHARA T, et al. Miscibility, mechanical and thermal properties of poly(lactic acid)/polyester-diol blends[J]. European Polymer Journal, 2009, 45(8): 2304-2312.
26
LIU J R, LI C, HU F M. Effect of polystyrenes with different architectures on the β-nucleating efficiency and toughening of isotactic polypropylene[J]. Polymer International, 2018, 67(5): 506-514.
27
LIU J R, JIANG D X, LI Z H. Annealing-induced high impact toughness of immiscible isotactic polypropylene/poly(acrylonitrile-butadiene-styrene) blend[J]. Polymers for Advanced Technologies, 2022, 33(6): 1933-1943.
28
QI L, WU L, HE R, et al. Synergistic toughening of polypropylene with ultra-high molecular weight polyethylene and elastomer-olefin block copolymers[J]. RSC Advances, 2019, 9(41): 23994-24002.
29
HAN S D, ZHANG T C, GUO Y H, et al. Brittle-ductile transition behavior of the polypropylene/ultra-high molecular weight polyethylene/olefin block copolymers ternary blends: Dispersion and interface design[J]. Polymer, 2019, DOI: 10.1016/j.polymer.2019.121819.
30
LIU J R, ZHANG L C, FANG Z. Well dispersion of poly(acrylonitrile-butadiene-styrene) in isotactic polypropylene mediated by incorporation of graphene and the elevated toughness[J]. Polymers for Advanced Technologies, 2021, 32(5): 2020-2029.
31
IBRAHIM M A H, HASSAN A, WAHIT M U, et al. Mechanical properties and morphology of polypropylene/poly(acrylonitrile-butadiene-styrene) nanocomposites: Effect of compatibilizer and montmorillonite content[J]. Journal of Elastomers and Plastics, 2017, 49(3): 209-225.

基金

常州大学校级教育教学研究课题(GJY2020081)

评论

PDF(2082 KB)

Accesses

Citation

Detail

段落导航
相关文章

/