MS型聚丙烯热塑性弹性体化学结构的研究

刘永超, 孙长红, 孙为云, 晋玉霞, 张磊

PDF(1003 KB)
PDF(1003 KB)
塑料科技 ›› 2024, Vol. 52 ›› Issue (05) : 66-70. DOI: 10.15925/j.cnki.issn1005-3360.2024.05.014
加工与应用

MS型聚丙烯热塑性弹性体化学结构的研究

作者信息 +

Chemical Structure of MS-Polypropylene Thermo Plastic Elastomer

Author information +
History +

摘要

聚丙烯热塑性弹性体(PTPE)在制备过程中相态结构一直为多相体系,在聚丙烯(PP)和弹性体相容性有限的情况下,很难控制PP和弹性体之间各组分相畴的分散均匀性、大小和形态。为了使PTPE具有大小均匀的相畴、易于控制的形貌和结构、稳定力学性能,从PP与弹性体的均相体系出发,利用硫化过程中微相分离机理,研制出微相分离型PP热塑性弹性体(MS-PTPE),并用分级提取方法研究MS-PTPE的化学结构。结果表明:MS-PTPE是由未反应的PP、未反应的弹性体、带有架桥剂链的PP和(或)弹性体的接枝共聚物以及弹性体、PP大分子间通过架桥剂形成的聚合桥链联结的交联物构成。弹性体的不同配比、引发剂的不同用量、架桥剂的不同用量对MS-PTPE的化学结构都有显著的影响,并且引发剂、架桥剂用量之间有一定的协同效应。

Abstract

The phase structure of polypropylene thermoplastic elastomer (PTPE) is always a multiphase system in the preparation process. Under the condition of limited compatibility between polypropylene (PP) and elastomer, it is difficult to control the dispersion uniformity, size and morphology of each component domain between PP and elastomer. In order to make PTPE have homogeneous domains, easily controlled morphology and structure, and stable mechanical properties, microphase separation PP thermoplastic elastomer (MS-PTPE) was prepared based on the homogeneous system of PP and elastomer, and the chemical structure of MS-PTPE was studied by fractional extraction method. The results show that MS-PTPE is composed of unreacted PP, unreacted elastomer, graft copolymer of PP and (or) elastomer with bridging agent chain, and crosslink between elastomer and PP macromolecules with polymeric bridging chain formed by bridging agent. The chemical structure of MS-PTPE was significantly affected by different proportion of elastomer, different dosage of initiator and different dosage of bridging agent, and there was a certain synergistic effect between the dosage of initiator and bridging agent.

关键词

MS型聚丙烯热塑性弹性体 / 化学结构 / 分级提取

Key words

MS-PTPE / Chemical structure / Hierarchical extraction

中图分类号

TQ334.2

引用本文

导出引用
刘永超 , 孙长红 , 孙为云 , . MS型聚丙烯热塑性弹性体化学结构的研究. 塑料科技. 2024, 52(05): 66-70 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.05.014
LIU Yong-chao, SUN Chang-hong, SUN Wei-yun, et al. Chemical Structure of MS-Polypropylene Thermo Plastic Elastomer[J]. Plastics Science and Technology. 2024, 52(05): 66-70 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.05.014

参考文献

1
MOHITE A S, RAJPURKAR Y D, MORE A P. Bridging the gap between rubbers and plastics: A review on thermoplastic polyolefin elastomers[J]. Polymer Bulletin, 2022, 79: 1309-1343.
2
郭利健,汲智如,胡亚泽.马来酸酐接枝EPDM改性聚丙烯的制备及性能研究[J].塑料科技,2020,48(4):20-23.
3
HAMED H K, VAHID M, MASOUD M, et al. Morphological, rheological, and mechanical properties of ethylene propylene diene monomer/carboxylated styrene-butadiene rubber/multiwall carbon nanotube nanocomposites[J]. International Journal of Polymer Analysis and Characterization, 2020, DOI: 10.1080/1023666X.2020.1807681.
4
SAHA S, BHOWMICK A K. Computer simulation of thermoplastic elastomers from rubber-plastic blends and comparison with experiments[J]. Polymer, 2016, DOI: 10.1016/j.polymer.2016.09.065.
5
RAFAEL B, O. E G B, D. J A. Flexible, high-density and water- resistant polypropylene/thermoplastic elastomer/inorganic fillers composites[J]. Macromolecular Symposia, 2020, DOI: 10.1002/masy.202000132.
6
赵聪,郑金华,陈笑微,等.无卤阻燃型EPDM材料和EPDM/PP TPV复合材料等胶料性能的研究进展[J].橡塑技术与装备,2018,44(23):31-42.
7
SAFFARI A, SHEIKH A. Peroxide dynamic crosslinking in impact modification of polypropylene with polybutadiene[J]. Polymer Testing, 2017, 57: 260-269.
8
NASKAR K, NOORDERMEER J W M. Influence of premade and in situ compatibilizers in polypropylene/ethylene-propylene-diene terpolymer thermoplastic elastomeric olefins and thermoplastic vulcanizates[J]. Journal of Applied Polymer Science, 2006, 100(5): 3877-3888.
9
ZHOU Q, YAN L, LAI X, et al. The effect of lanthanum trimethacrylate on the mechanical properties and flame retardancy of dynamically vulcanized PP/EPDM thermoplastic vulcanizates[J]. Journal of Elastomers & Plastics, 2018, 50(4): 339-353.
10
XU C H, LIN B F, LIANG X Q, et al. Zinc dimethacrylate induced in situ interfacial compatibilization turns EPDM/PP TPVs into a shape memory material[J]. Industrial & Engineering Chemistry Research, 2016, 55(16): 4539-4548.
11
李培军,赵鑫,毕薇娜,等.原位增容剂和助交联剂对胶粉/聚丙烯热塑性弹性体性能的影响[J].特种橡胶制品,2017,38(2):10-13, 39.
12
PANIGRAHI H, SREENATH P R, BHOWMICK A K, et al. Unique compatibilized thermoplastic elastomer from polypropylene and epichlorohydrin rubber[J]. Polymer, 2019, DOI: 10.1016/j.polymer.2019.121866.
13
洪艳.增韧母料的制备及其对聚丙烯结构与性能的影响[D].武汉:湖北工业大学,2019.
14
程思怡.三元乙丙橡胶/聚丙烯热塑性弹性体的结构与性能[D].武汉:湖北工业大学,2015.
15
高炜斌,徐亮成.高分子材料分析与测试[M].北京:化学工业出版社,2020.
16
LI Y, LI Y, HAN C, et al. Morphology and properties in the binary blends of polypropylene and propylene-ethylene random copolymers[J]. Polymer Bulletin, 2019, DOI: 10.1007/s00289-018-2533-5.
17
程龄贺,李贵勋,管众,等.接枝架桥剂配比对PP/a-PA66原位成纤复合材料形态结构和力学性能的影响[J].高分子材料科学与工程,2012,28(6):89-92, 97.
18
石敏,朱建华,吉玉碧,等.DCP对动态硫化EPDM/PP性能的影响[J].塑料科技,2016,44(12):27-31.
19
牛慧,刘姝慧,何宗科,等.乙丙橡胶可逆交联研究进展[J].石油化工,2019,48(6):642-651.
20
NING N Y, LI X Y, TIAN H C, et al. Unique microstructure of an oil resistant nitrile butadiene rubber/polypropylene dynamically vulcanized thermoplastic elastomer[J]. RSC Advances, 2017, 7(9): 5451-5458.
21
XU C H, ZHENG Z J, WU W C, et al. Dynamically vulcanized PP/EPDM blends with balanced stiffness and toughness via in-situ compatibilization of MAA and excess ZnO nanoparticles: preparation, structure and properties[J]. Composites Part B Engineering, 2019, 160: 147-157.
22
ESTAGY S, MOVAHED O S, YAZDANBAKHSH S, et al. A novel chemical technique for compatibility of ethylene-propylene-diene monomer rubber and styrene-butadiene rubber in their blends[J]. Journal of Elastomers & Plastics, 2017, 49 (4): 298-314.
23
GUNTUR N P R, YADAV S G, GOPALAN S. Effect of titanium carbide as a filler on the mechanical properties of styrene butadiene rubber[J]. Materials Today: Proceedings, 2020, 24: 1552-1560.
24
石敏,朱建华,吉玉碧,等.石蜡油对动态硫化EPDM/PP热塑性弹性体力学性能的影响[J].塑料科技,2018,46(10):57-60.
25
GIORGIA Z, GIUSEPPE L. Polyolefin thermoplastic elastomers from polymerization catalysis: Advantages, pitfalls and future challenges[J]. Progress in Polymer Science, 2021, DOI:10.1016/j.progpolymsci.2020.101342.

基金

国家自然科学基金(61535002)

评论

PDF(1003 KB)

Accesses

Citation

Detail

段落导航
相关文章

/