石墨烯填充对LLDPE结构和性能的影响

杨冰, 高丽颖, 周龙, 迟卫瀚, 王元霞, 李先亮, 宋立新

PDF(1644 KB)
PDF(1644 KB)
塑料科技 ›› 2024, Vol. 52 ›› Issue (05) : 6-12. DOI: 10.15925/j.cnki.issn1005-3360.2024.05.002
理论与研究

石墨烯填充对LLDPE结构和性能的影响

作者信息 +

Effects of Graphene Filling on Structure and Properties of LLDPE

Author information +
History +

摘要

通过熔融共混法制备了马来酸酐接枝线型低密度聚乙烯/石墨烯(LLDPE-g-MAH/G)纳米复合材料,探讨不同石墨烯含量对LLDPE-g-MAH/G纳米复合材料结晶行为、流变性能及力学性能的影响。结果表明:随着石墨烯含量的增加,复合材料的结晶度、长周期逐渐增加,储能模量、损耗模量和复数黏度呈现先增加而后趋于平缓的趋势,拉伸强度和断裂伸长率均随石墨烯含量的增加呈先升后降的趋势。当石墨烯含量为0.5%时,纳米复合材料的力学性能最佳,拉伸强度和断裂伸长率分别达到26.8 MPa、998%。当石墨烯含量为0.5%时,拉伸后纳米复合材料中聚乙烯晶体和石墨烯同时沿拉伸方向发生取向,使纳米复合材料中的原始晶体受损破碎,晶体尺寸减小,熔点降低。拉伸后纳米复合材料沿拉伸方向的导热系数是拉伸前的3.6倍,导热性能大幅度提升。

Abstract

Maleic anhydride grafted linear low density polyethylene/graphene (LLDPE-g-MAH/G) nanocomposites were prepared by melt blending. The effects of different graphene content on the crystallization behavior, rheological properties and mechanical properties of LLDPE-g-MAH/G nanocomposites were investigated. The results show that with the increase of graphene content, the crystallinity and long period of the composites increase gradually, the storage modulus, loss modulus and complex viscosity increase first and then tend to be gentle, and the tensile strength and elongation at break increase first and then decrease with the increase of graphene content. When the graphene content is 0.5%, the mechanical properties of the nanocomposites are the best, and the tensile strength and elongation at break reach 26.8 MPa and 998%, respectively. When the graphene content is 0.5%, the polyethylene crystal and graphene in the stretched nanocomposites are oriented along the stretching direction at the same time, so that the original crystal in the nanocomposites is damaged and broken, the crystal size is reduced, and the melting point is reduced. The thermal conductivity of the nanocomposites along the tensile direction after stretching is 3.6 times that before stretching, and the thermal conductivity is greatly improved.

关键词

线型低密度聚乙烯/石墨烯 / 结晶行为 / 力学性能 / 导热性能 / 热拉伸效应

Key words

LLDPE-g-MAH/G / Crystallization behavior / Mechanical property / Thermal conductivity / Thermal stretching effect

中图分类号

TQ327.6

引用本文

导出引用
杨冰 , 高丽颖 , 周龙 , . 石墨烯填充对LLDPE结构和性能的影响. 塑料科技. 2024, 52(05): 6-12 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.05.002
YANG Bing, GAO Li-ying, ZHOU Long, et al. Effects of Graphene Filling on Structure and Properties of LLDPE[J]. Plastics Science and Technology. 2024, 52(05): 6-12 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.05.002

参考文献

1
李毅,董常坤,尹浩庭,等.聚三氟氯乙烯/氧化石墨烯复合材料结晶行为及性能的研究[J].塑料科技,2023,51(1):1-6.
2
黄才华,张磊,吴海华,等.基于响应面法的PLA/石墨烯/SiC复合线材挤出参数优化[J].塑料科技,2022,50(3):84-89.
3
ASHOK KUMAR S S, BASHIR S, RAMESH K, et al. A review on graphene and its derivatives as the forerunner of the two-dimensional material family for the future[J]. Journal of Materials Science, 2022, 57(26): 12236-12278.
4
DEY B, AHMAD M W, ALMEZENI A, et al. Enhancing electrical, mechanical, and thermal properties of polybenzimidazole by 3D carbon nanotube@ graphene oxide hybrid[J]. Composites Communications, 2020, 17: 87-96.
5
TAMBRALLIMATH V, KESHAVAMURTHY R, SARAVANABAVAN D, et al. Thermal behavior of PC-ABS based graphene filled polymer nanocomposite synthesized by FDM process[J]. Composites Communications, 2019, 15: 129-134.
6
ZHOU K, GUI Z, HU Y, et al. The influence of cobalt oxide–graphene hybrids on thermal degradation, fire hazards and mechanical properties of thermoplastic polyurethane composites[J]. Composites Part A: Applied Science and Manufacturing, 2016, 88: 10-18.
7
HU K, KULKARNI D D, CHOI I, et al. Graphene-polymer nanocomposites for structural and functional applications[J]. Progress in Polymer Science, 2014, 39(11): 1934-1972.
8
MOHAN V B, LAU K, HUI D, et al. Graphene-based materials and their composites: A review on production, applications and product limitations[J]. Composites Part B: Engineering, 2018, 142: 200-220.
9
王思月,王学志,贺晶晶,等.氧化石墨烯改性碳纤维水泥基复合材料研究进展[J].化工新型材料,2023,51(8):217-221.
10
SONG H D, IM Y K, BAEK J B, et al. Heptene-functionalized graphitic nanoplatelets for high-performance composites of linear low-density polyethylene[J]. Composites Science and Technology, 2020, DOI: 10.1016/j.compscitech.2020.108380.
11
VASILEIOU A A, KONTOPOULOU M, DOCOSLIS A. A noncovalent compatibilization approach to improve the filler dispersion and properties of polyethylene/graphene composites[J]. ACS applied materials & interfaces, 2014, 6(3): 1916-1925.
12
JING J, CHEN Y, SHI S, et al. Facile and scalable fabrication of highly thermal conductive polyethylene/graphene nanocomposites by combining solid-state shear milling and FDM 3D-printing aligning methods[J]. Chemical Engineering Journal, 2020, DOI: 10.1016/j.cej.2020.126218.
13
ZHANG H, ZHAO S, YU X, et al. Nascent particle sizes and degrees of entanglement are responsible for the significant differences in impact strength of ultrahigh molecular weight polyethylene[J]. Journal of Polymer Science Part B: Polymer Physics, 2019, 57(10): 632-641.
14
WANG Y, SHI Y, SHAO W, et al. Crystallization, structures, and properties of different polyolefins with similar grafting degree of maleic anhydride[J]. Polymers, 2020, DOI: 10.3390/polym12030675.
15
VALLÉS C, ABDELKADER A M, YOUNG R J, et al. Few layer graphene-polypropylene nanocomposites: the role of flake diameter[J]. Faraday discussions, 2014, 173: 379-390.
16
WANG C, CHIU Y C, HUANG C L. Electrical percolation and crystallization kinetics of semi-crystalline polystyrene composites filled with graphene nanosheets[J]. Materials Chemistry and Physics, 2015, 164: 206-213.
17
LIU C, YE S, FENG J. Promoting the dispersion of graphene and crystallization of poly(lactic acid) with a freezing-dried graphene/PEG masterbatch[J]. Composites Science and Technology, 2017, 144: 215-222.
18
HE Y, WANG J, ZHANG H, et al. Polydopamine-modified graphene oxide nanocomposite membrane for proton exchange membrane fuel cell under anhydrous conditions[J]. Journal of Materials Chemistry A, 2014, 2(25): 9548-9558.
19
SALAVAGIONE H J, QUILES-DÍAZ S, ENRIQUE-JIMENEZ P, et al. Development of advanced elastomeric conductive nanocomposites by selective chemical affinity of modified graphene[J]. Macromolecules, 2016, 49(13): 4948-4956.
20
罗静云,白世建,张玉霞,等.聚乳酸纳米复合材料流变性能研究进展[J].中国塑料,2020,34(9):103-110.
21
王刚,杨峰,蔺海兰,等.聚乳酸/石墨烯纳米复合材料的制备与性能研究进展[J].工程塑料应用,2014,42(5):119-124.
22
孔庆宁,罗钟琳,王标兵.MWCNTs/rGO纳米杂化材料改性氨纶的流变性能[J].工程塑料应用,2018,46(4):98-102, 112.
23
李宝玉.石墨烯/聚乙烯复合改性沥青胶结料的流变性能研究[J].硅酸盐通报,2021,40(7):2461-2468.
24
温世鹏,柳东海,许宗超,等.石墨烯/弹性体纳米复合材料研究进展[J].北京化工大学学报,2015,42(6):1-14.
25
TANG Y, YANG X, WANG R, et al. Enhancement of the mechanical properties of graphene-copper composites with graphene-nickel hybrids[J]. Materials Science and Engineering: A, 2014, 599: 247-254.
26
白家豪,郭建刚.石墨烯/柔性基底复合结构双向界面切应力传递问题的理论研究[J].物理学报,2020,69(5):147-159.
27
YU Y, TAN Z, ZHANG J, et al. Microstructural evolution and mechanical investigation of hot stretched graphene oxide reinforced polyacrylonitrile nanofiber yarns[J]. Polymers for Advanced Technologies, 2020, 31(9): 1935-1945.
28
ZHOU J, XU S, ZHENG Y, et al. Multistage structural ordering and crystallization of poly(trimethylene terephthalate) during Sub-Tg stretching: Synergetic effects of chain orientation and conformational transition[J]. Macromolecules, 2021, 55(1): 252-261.
29
HUANG C, QIAN X, YANG R. Thermal conductivity of polymers and polymer nanocomposites[J]. Materials Science and Engineering: R: Reports, 2018, 132: 1-22.
30
SONG J, CHEN C, ZHANG Y. High thermal conductivity and stretchability of layer-by-layer assembled silicone rubber/graphene nanosheets multilayered films[J]. Composites Part A: Applied Science and Manufacturing, 2018, 105: 1-8.

基金

辽宁省教育厅青年科技人才“育苗”项目(LQ2020007)

评论

PDF(1644 KB)

Accesses

Citation

Detail

段落导航
相关文章

/