
石墨烯填充对LLDPE结构和性能的影响
杨冰, 高丽颖, 周龙, 迟卫瀚, 王元霞, 李先亮, 宋立新
石墨烯填充对LLDPE结构和性能的影响
Effects of Graphene Filling on Structure and Properties of LLDPE
通过熔融共混法制备了马来酸酐接枝线型低密度聚乙烯/石墨烯(LLDPE-g-MAH/G)纳米复合材料,探讨不同石墨烯含量对LLDPE-g-MAH/G纳米复合材料结晶行为、流变性能及力学性能的影响。结果表明:随着石墨烯含量的增加,复合材料的结晶度、长周期逐渐增加,储能模量、损耗模量和复数黏度呈现先增加而后趋于平缓的趋势,拉伸强度和断裂伸长率均随石墨烯含量的增加呈先升后降的趋势。当石墨烯含量为0.5%时,纳米复合材料的力学性能最佳,拉伸强度和断裂伸长率分别达到26.8 MPa、998%。当石墨烯含量为0.5%时,拉伸后纳米复合材料中聚乙烯晶体和石墨烯同时沿拉伸方向发生取向,使纳米复合材料中的原始晶体受损破碎,晶体尺寸减小,熔点降低。拉伸后纳米复合材料沿拉伸方向的导热系数是拉伸前的3.6倍,导热性能大幅度提升。
Maleic anhydride grafted linear low density polyethylene/graphene (LLDPE-g-MAH/G) nanocomposites were prepared by melt blending. The effects of different graphene content on the crystallization behavior, rheological properties and mechanical properties of LLDPE-g-MAH/G nanocomposites were investigated. The results show that with the increase of graphene content, the crystallinity and long period of the composites increase gradually, the storage modulus, loss modulus and complex viscosity increase first and then tend to be gentle, and the tensile strength and elongation at break increase first and then decrease with the increase of graphene content. When the graphene content is 0.5%, the mechanical properties of the nanocomposites are the best, and the tensile strength and elongation at break reach 26.8 MPa and 998%, respectively. When the graphene content is 0.5%, the polyethylene crystal and graphene in the stretched nanocomposites are oriented along the stretching direction at the same time, so that the original crystal in the nanocomposites is damaged and broken, the crystal size is reduced, and the melting point is reduced. The thermal conductivity of the nanocomposites along the tensile direction after stretching is 3.6 times that before stretching, and the thermal conductivity is greatly improved.
线型低密度聚乙烯/石墨烯 / 结晶行为 / 力学性能 / 导热性能 / 热拉伸效应
LLDPE-g-MAH/G / Crystallization behavior / Mechanical property / Thermal conductivity / Thermal stretching effect
TQ327.6
1 |
李毅,董常坤,尹浩庭,等.聚三氟氯乙烯/氧化石墨烯复合材料结晶行为及性能的研究[J].塑料科技,2023,51(1):1-6.
|
2 |
黄才华,张磊,吴海华,等.基于响应面法的PLA/石墨烯/SiC复合线材挤出参数优化[J].塑料科技,2022,50(3):84-89.
|
3 |
|
4 |
|
5 |
|
6 |
|
7 |
|
8 |
|
9 |
王思月,王学志,贺晶晶,等.氧化石墨烯改性碳纤维水泥基复合材料研究进展[J].化工新型材料,2023,51(8):217-221.
|
10 |
|
11 |
|
12 |
|
13 |
|
14 |
|
15 |
|
16 |
|
17 |
|
18 |
|
19 |
|
20 |
罗静云,白世建,张玉霞,等.聚乳酸纳米复合材料流变性能研究进展[J].中国塑料,2020,34(9):103-110.
|
21 |
王刚,杨峰,蔺海兰,等.聚乳酸/石墨烯纳米复合材料的制备与性能研究进展[J].工程塑料应用,2014,42(5):119-124.
|
22 |
孔庆宁,罗钟琳,王标兵.MWCNTs/rGO纳米杂化材料改性氨纶的流变性能[J].工程塑料应用,2018,46(4):98-102, 112.
|
23 |
李宝玉.石墨烯/聚乙烯复合改性沥青胶结料的流变性能研究[J].硅酸盐通报,2021,40(7):2461-2468.
|
24 |
温世鹏,柳东海,许宗超,等.石墨烯/弹性体纳米复合材料研究进展[J].北京化工大学学报,2015,42(6):1-14.
|
25 |
|
26 |
白家豪,郭建刚.石墨烯/柔性基底复合结构双向界面切应力传递问题的理论研究[J].物理学报,2020,69(5):147-159.
|
27 |
|
28 |
|
29 |
|
30 |
|
/
〈 |
|
〉 |