3D打印PETG的工艺、改性及应用研究进展

尚祖明, 胡成女

PDF(693 KB)
PDF(693 KB)
塑料科技 ›› 2024, Vol. 52 ›› Issue (03) : 121-126. DOI: 10.15925/j.cnki.issn1005-3360.2024.03.024
综述

3D打印PETG的工艺、改性及应用研究进展

作者信息 +

Research Progress on Technology, Modification and Application of 3D Printing PETG

Author information +
History +

摘要

聚对苯二甲酸乙二醇酯-1,4环己烷二甲醇酯(PETG)由于其优异的性能,可作为一种优选的3D打印高分子材料,备受学者们的青睐。文章对PETG的打印工艺进行了研究,发现打印方向、打印厚度、打印温度、打印速度和填充密度等工艺参数都会对产品的性能产生显著影响,采用纤维、聚合物和石墨烯等共混改性方法对3D打印PETG材料进行改性研究可改善材料的耐疲劳性能、力学性能和热性能等。文章还对3D打印PETG在生物医学、机械加工和海洋等领域的应用研究以及再生利用的可行性研究进行了详细的综述。最后,文章对未来3D打印PETG的发展前景进行预测,期望能够为3D打印PETG材料的工业化应用提供指导。

Abstract

Polyethylene terephthalate-1,4-cyclohexane dimethyl ester (PETG) can be used as a preferred polymer material for 3D printing due to its excellent properties, which has been favored by scholars. In this paper, the printing process of PETG was studied, and it was found that the printing direction, printing thickness, printing temperature, printing speed and filling density, and other process parameters would have a significant impact on the performance of the product. The modification of 3D printed PETG material was studied by blending modification methods such as fiber, polymer, and graphene to improve the fatigue resistance, mechanical and thermal properties of the material. The application research of 3D printing PETG in biomedicine, machining and marine fields as well as the feasibility study of recycling were reviewed in detail. Finally, the development prospect of 3D printing PETG in the future was predicted. It is expected to provide guidance for the industrial application of 3D printed PETG materials.

关键词

3D打印 / PETG / 打印工艺

Key words

3D printing / PETG / Printing process

中图分类号

TQ323.4

引用本文

导出引用
尚祖明 , 胡成女. 3D打印PETG的工艺、改性及应用研究进展. 塑料科技. 2024, 52(03): 121-126 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.03.024
SHANG Zu-ming, HU Cheng-nü. Research Progress on Technology, Modification and Application of 3D Printing PETG[J]. Plastics Science and Technology. 2024, 52(03): 121-126 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.03.024

参考文献

1
HAMIDI A, TADESSE Y. Single step 3D printing of bioinspired structures via metal reinforced thermoplastic and highly stretchable elastomer[J]. Composite Structures, 2019, 210(2): 250-261.
2
MALYADRI T, SUNKARA N, SRINIVASA R M S. Investigation on mechanical properties of 3D printed PETG paterial[J]. Recent Advances in Manufacturing Processes and Systems, 2022, DOI: 10.1007/978-981-16-7787-8_46.
3
刘梦梦,朱晓冬.3D打印成型工艺及材料应用研究进展[J].机械研究与应用,2021,34(4):197-202.
4
SEPAHI M T, ABUSALMA H, JOVANOVIC V, et al. Mechanical properties of 3D-printed parts made of polyethylene terephthalate glycol[J]. Journal of Materials Engineering and Performance, 2021, 30(13): 6851-6861.
5
王玉健,李方正.3D打印材料的研究进展[J].工业技术创新,2023,10(3):55-63.
6
SLIVA A, GUILHON D. Comparative analysis of ankle prosthesis connector adapters in 3D printed using PLA and PETG[J]. XXVI Brazilian Congress on Biomedical Engineering, 2019, DOI: 10.1007/978-981-13-2119-1_24.
7
HOLCOMB G, CALDONA E B, CHENG X, et al. On the optimized 3D printing and post-processing of PETG materials[J]. MRS Communications, 2022, 12(7): 381-387.
8
ALEXOPOULOU V E, CHRISTODOULOU I T, MARKOPOULOS A P.  Effect of printing speed and layer height on geometrical accuracy of FDM-printed resolution holes of PETG artifacts[J]. Engineering Proceedings, 2022, DOI: 10.3390/IECMA2022-12887.
9
PRABHAKARAN R, BRITTO J J J, VENKATESH R, et al. Experimental investigation and identifying the suitable process parameters for additively manufactured PETG material by fused deposition modeling[J]. Recent Advances in Materials Technologies, 2022, DOI: 10.1007/978-981-19-3895-5_44.
10
TERAIYA S, VYAVAHARE S, KUMAR S. Experimental investigation on influence of process parameters on mechanical properties of PETG parts made by fused deposition modelling[J]. Advances in Manufacturing Processes, 2020, DOI: 10.1007/978-981-15-9117-4_21.
11
ÖZEN A, ABALI B E, VÖLLMECKE C, et al. Exploring the role of manufacturing parameters on microstructure and mechanical properties in fused deposition modeling (FDM) using PETG[J]. Applied Composite Materials, 2021, 28(15): 1799-1828.
12
LOKESH N, SUDHEER REDDY J, PRAVEEN B A, et al. Evaluation and optimization of process parameter for surface roughness of 3D-printed PETG specimens using taguchi method at vonstant printing temperature[J]. Recent Advances in Mechanical Engineering, 2023, DOI: 10.1007/978-981-16-9057-0_22.
13
ROMEIJN T, BEHRENS M, PAUL G, et al. Instantaneous and long-term mechanical properties of polyethylene terephthalate glycol(PETG) additively manufactured by pellet-based material extrusion[J]. Additive Manufacturing, 2022, DOI: 10.1016/j.addma.2022.103145.
14
ALARIFI I M. PETG/carbon fiber composites with different structures produced by 3D printing[J]. Polymer Testing, 2023, DOI: 10.1016/j.polymertesting.2023.107949.
15
SUNDER S S, SAHITHI V V D. Process parameter optimization of FDM 3D printer using PETG and carbon fiber PETG[J]. Materials Science Forum, 2023(3): 49-57.
16
VAUGHT L O, POLYCARPOU A A. Investigating the effect of fused deposition modelling on the tribology of PETG thermoplastic[J]. Wear, 2023, DOI: 10.1016/j.wear.2023.204736.
17
DE MORAES MELO NETO C L, BERNARDI B S, DE CARVALHO DEKON S F, et al. Influence of thermal cycles and disinfection on the roughness, microhardness and color of PETG/TPU and PMMA[J]. Polymers in Medicine, 2023, 53(1): 19-24.
18
KICHLOO A F, RAINA A, HAQ M I U, et al. Impact of carbon fiber reinforcement on mechanical and tribological behavior of 3D-printed polyethylene terephthalate glycol polymer composites—An experimental investigation[J]. Journal of Materials Engineering and Performance, 2021, DOI: 10.1007/s11665-021-06262-6.
19
韩学斌,张紫慧,石鸿瑞,等.3DP技术下智能化膝盖助力设备可行性分析[J].智能城市,2021,7(5):13-14.
20
MUSHTAQ R T, Iqbal A, Wang Y N, et al. Parametric optimization of 3D printing process hybridized with laser-polished PETG polymer[J]. Polymer Testing, 2023, DOI: 10.1016/j.polymertesting.2023.108129.
21
RAMÍREZ-REVILLA S, CAMACHO-VALENCIA D, GONZALES-CONDORI E G, et al. Evaluation and comparison of the degradability and compressive and tensile properties of 3D printing polymeric materials: PLA, PETG, PC, and ASA[J]. MRS Communications, 2023, 13(1): 55-62.
22
汪杨.基于熔融沉积成型3D打印工艺的混合增材制造技术基础研究[D].南京:东南大学,2020.
23
KUMARESAN R, SAMYKANO M, KADIRGAMA K, et al. Effects of printing parameters on the mechanical characteristics and mathematical modeling of FDM-printed PETG[J]. The International Journal of Advanced Manufacturing Technology, 2023, 128(7/8): 3471-3489.
24
CLARKE T, HOSSEINI A. Effects of print parameters on tensile characteristics of additively manufactured polyethylene terephthalate-glycol(PETG)[J]. The International Journal of Advanced Manufacturing Technology, 2023, 125(11/12): 4953-4974.
25
KADHUM A H, AL-ZUBAIDI S, ABDULKAREEM S S. Effect of the infill patterns on the mechanical and surface characteristics of 3D printing of PLA, PLA+ and PETG materials[J]. Chem Engineering, 2023, DOI: 10.3390/chemengineering7030046.
26
LOSKOT J, JEZBERA D, LOSKOT R, et al. Influence of print speed on the microstructure, morphology, and mechanical properties of 3D-printed PETG products[J]. Polymer Testing, 2023, DOI: 10.1016/j.polymertesting.2023.108055.
27
ERGENE B, BOLAT Ç. An experimental study on the role of manufacturing parameters on the dry sliding wear performance of additively manufactured PETG[J]. International Polymer Processing, 2022, 37(3): 255-270.
28
GARCÍA E, NÚÑEZ P J, CAMINERO M A, et al. Effects of carbon fibre reinforcement on the geometric properties of PETG-based filament using FFF additive manufacturing[J]. Composites Part B: Engineering, 2022, DOI: 10.1016/j.compositesb.2022.109766.
29
VALVEZ S, SILVA A P, REIS P N B. Optimization of printing parameters to maximize the mechanical properties of 3D-printed PETG-based parts[J]. Polymers, 2022, DOI: 10.3390/polym14132564.
30
CHEN Z X, GONG K, HUANG C, et al. Parameter optimization for PETG/ABS bilayer tensile specimens in material extrusion 3D printing through orthogonal method[J]. The International Journal of Advanced Manufacturing Technology, 2023, 127(1/2): 447-458.
31
赵高升,刘秀军,张志明,等.PETG/PBT耗材的制备及其3D打印工艺研究[J].塑料工业,2017,45(12):59-62.
32
RAJESHIRKE M, ALKUNTE S, HUSEYNOV O, et al. Fatigue analysis of additively manufactured short carbon fiber-reinforced PETG components[J]. The International Journal of Advanced Manufacturing Technology, 2023, 128(5/6): 2377-2394.
33
MISHRA P K, KUMAR D S, JAGADESH T, et al. Experimental investigation into flexural and impact behavior of 3D printed PETG short carbon fibre composite under solar light irradiation[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2023, 237(16): 3597-3607.
34
VALVEZ S, SILVA A P, REIS P N B. Compressive behavior of 3D-printed PETG composites[J]. Aerospace, 2022, DOI: 10.3390/aerospace9030124.
35
乔雯钰,王晨蕾,胡浩.FDM用PETG系列耗材的改性研究[J].中国塑料,2020,34(10):24-31.
36
郝亚暾,张倩,孙奉瑞.3D打印参数对PETG基TPU制品力学性能的影响[J].特种橡胶制品,2020,41(2):44-46.
37
索帅鹏.基于FDM的多色多材料3D打印机开发与应用研究[D].济南:齐鲁工业大学 2023.
38
BEDI S S, MALLESHA V, MAHESH V, et al. Thermal characterization of 3D printable multifunctional graphene‐reinforced polyethylene terephthalate glycol(PETG) composite filaments enabled for smart structural applications[J]. Polymer Engineering & Science, 2023, 63(9): 2841-2856.
39
KUMAR J, NEGI S. Development of 3D printable cenosphere-reinforced polyethylene terephthalate glycol(PETG) filaments for lightweight structural applications[J]. Polymer Composites, 2023, 44(10): 7030-7039.
40
CAFINO R, SOLIVEN M M T, VELASCO L C, et al. Evaluation of polyethylene terephthalate glycol(PETG), Simubone™, and photopolymer resin as 3D printed temporal bone models for surgical simulation[J]. Asian Journal of Surgery, 2023, DOI: 10.1016/j.asjsur.2023.08.095.
41
VIJAYASANKAR K N, DILEEP B, DODDAMANI M, et al. Additive manufacturing of short silk fiber reinforced PETG composites[J]. Materials Today Communications, 2022, DOI: 10.1016/j.mtcomm.2022.104772.
42
SHILOV S Y, ROZHKOVA Y A, MARKOVA L N, et al. Biocompatibility of 3D-printed PLA, PEEK and PETG: Adhesion of bone marrow and peritoneal lavage cells[J]. Polymers, 2022, DOI: 10.3390/polym14193958.
43
SOLEYMAN E, ABEROUMAND M, RAHMATABADI D, et al. Assessment of controllable shape transformation, potential applications, and tensile shape memory properties of 3D printed PETG[J]. Journal of Materials Research and Technology, 2022, 18(24): 4201-4215.
44
许昆鹏.PETG-酪蛋白胶3D打印形状记忆塑料的制备研究[J].塑料科技,2019,47(10):44-79.
45
SIDDIKALI P, SREEKANTH P S R. Performance evaluation of CNT reinforcement on electroless plating on solid free-form-fabricated PETG specimens for prosthetic limb application[J]. Polymers, 2022, DOI: 10.3390/polym14163366.
46
张凯,姚广,王鸿沣.我国塑料回收产业对温室气体减排的影响[J].塑料科技,2020,48(7):126-128.
47
FERNÁNDEZ P, MARQUÉS R, BELTRÁN N, et al. Using PETG/rPET blends in fused particle fabrication: Analysis of feasibility and mechanical behaviour[J]. Advances in Science and Technology, 2023, DOI: 10.4028/p-5M4UqT.
48
BREMER M, JANOSCHEK L, KASCHTA D, et al. Influence of plastic recycling-A feasibility study for additive manufacturing using glycol modified polyethylene terephthalate(PETG)[J]. SN Applied Sciences, 2022, DOI: 10.1007/s42452-022-05039-3.
49
IGWE A C, ONIKO K D. Investigation for an alternative material for the development of a clubfoot brace to improve sustainability[J]. Journal of Materials Engineering and Performance, 2023, DOI: 10.1007/s11665-023-08012-2.
50
BEX G J P, INGENHUT B L J, CATE T T, et al. Sustainable approach to produce 3D-printed continuous carbon fiber composites: "A comparison of virgin and recycled PETG"[J]. Polymer Composites, 2021, DOI: 10.1002/pc.26143.

评论

PDF(693 KB)

Accesses

Citation

Detail

段落导航
相关文章

/