环状酸酐和环氧化物共聚制备聚酯及其性能研究

李思漩, 李鹏, 戴鑫, 李晓双, 胡君航, 宋昭峥, 蒋庆哲

PDF(1337 KB)
PDF(1337 KB)
塑料科技 ›› 2024, Vol. 52 ›› Issue (03) : 77-81. DOI: 10.15925/j.cnki.issn1005-3360.2024.03.015
加工与应用

环状酸酐和环氧化物共聚制备聚酯及其性能研究

作者信息 +

Preparation and Properties of Polyesters from Copolymerization of Cyclic Anhydrides and Epoxides

Author information +
History +

摘要

为解决合成聚酯过程中缩聚聚合的高能耗和环酯开环聚合单体种类少的问题,使用胺基酚类铁系配合物催化环状酸酐与环氧化物共聚反应,成功合成了六种聚酯产物。采用核磁共振氢谱(1H NMR)、傅里叶变换红外光谱(FTIR)、X射线衍射(XRD)、接触角测量仪、热重分析(TG)、差示扫描量热(DSC)和凝胶渗透色谱(GPC)对聚酯的结构和性能进行表征。结果表明:所有聚酯均为无定型结构且具有亲水性能;聚酯起始分解温度(T 5%)为250~300 ℃,玻璃化转变温度(T g)为55~139 ℃。含有刚性环己烷分子结构的聚酯T g较高,热力学稳定性能较好。

Abstract

In order to solve the problems of high energy consumption of condensation polymerization and small variety of monomers for ring-opening polymerization of cyclic esters in the process of synthesizing polyesters, six polyester products were successfully synthesized using aminophenolic iron-based complexes to catalyze the copolymerization reaction of cyclic anhydride and epoxides. Nuclear magnetic resonance hydrogen spectroscopy (1H NMR), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), contact angle meter, thermogravimetric analysis (TG), differential scanning calorimetry (DSC), and gel permeation chromatography (GPC) were used to characterize the structures and properties of polyester. The results showed that all the polyesters with hydrophilic properties were amorphous structures. The initial decomposition temperature (T 5%) of polyesters was 250~300 ℃ and the glass transition temperature (T g) of polyesters was 55~139 ℃. Polyesters containing rigid cyclohexane structure showed higher T g and better thermomechanical stability performance.

关键词

聚酯 / 环状酸酐 / 环氧化物 / 共聚

Key words

Polyester / Cyclic anhydrides / Epoxides / Copolymerizaiton

中图分类号

TQ323.4+1

引用本文

导出引用
李思漩 , 李鹏 , 戴鑫 , . 环状酸酐和环氧化物共聚制备聚酯及其性能研究. 塑料科技. 2024, 52(03): 77-81 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.03.015
LI Si-xuan, LI Peng, DAI Xin, et al. Preparation and Properties of Polyesters from Copolymerization of Cyclic Anhydrides and Epoxides[J]. Plastics Science and Technology. 2024, 52(03): 77-81 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.03.015

参考文献

1
PAUL S, ZHU Y, ROMAIN C, et al. Ring-opening copolymerization (ROCOP): Synthesis and properties of polyesters and polycarbonates[J]. Chemical Communications, 2015, 51(30): 6459-6479.
2
舒扬,熊兵,唐诗琪.含酰亚胺环聚硅氧烷的制备和热学性能研究[J].塑料科技,2023,51:68-71.
3
孔俊俊,陈传宗,卢晨晨,等.新型聚酯增塑聚乳酸材料的制备及性能研究[J].塑料科技,2021,49:1-5.
4
ZHU X, WANG R, KOU X, et al. Organocatalytic ring-opening alternating copolymerization of epoxides and cyclic anhydrides by a simple organobase/urea binary catalyst[J]. Macromolecular Chemistry and Physics, 2021, DOI: 10.1002/macp.202100104.
5
KERR R W F, WILLIAMS C K. Zr(IV) catalyst for the ring-opening copolymerization of anhydrides (A) with epoxides (B), oxetane (B), and tetrahydrofurans (C) to make ABB- and/or ABC-poly(ester-alt-ethers)[J]. Journal of the American Chemical Society, 2022, 144(15): 6882-6893.
6
ZHANG J, WANG L, LIU S, et al. Phosphazene/lewis acids as highly efficient cooperative catalyst for synthesis of high‐molecular-weight polyesters by ring-opening alternating copolymerization of epoxide and anhydride[J]. Journal of Polymer Science, 2020, 58(6): 803-810.
7
RYU H K, CHA J, YU N, et al. Semi-aromatic polyester synthesis via alternating ring-opening copolymerization using a chromium complex based on a pentapyridine ligand[J]. Inorganic Chemistry Communications, 2020, DOI: 10.1016/j.inoche.2020.108278.
8
高传慧,汪曼秋,刘雪涵,等.衣康酸类水性自乳化聚酯合成及点击固化研究[J].辽宁石油化工大学学报,2020,40(4):41-48.
9
KOZAK C M, AMBROSE K, ANDERSON T S. Copolymerization of carbon dioxide and epoxides by metal coordination complexes[J]. Coordination Chemistry Reviews, 2018, 376: 565-587.
10
ZHOU R, SU P, LIU J, et al. Bulk solvent-free ring-opening copolymerization of CHO and MA catalyzed by series of Cr(III) asymmetrical bis-Schiff-base complexes[J]. Inorganic Chemistry Communications, 2017, 85: 56-58.
11
DARENSBOURG D J, POLAND R R, ESCOBEDO C. Kinetic studies of the alternating copolymerization of cyclic acid anhydrides and epoxides, and the terpolymerization of cyclic acid anhydrides, epoxides, and CO2 catalyzed by (salen)CrIIICl[J]. Macromolecules, 2012, 45(5): 2242-2248.
12
HAN B, ZHANG L, LIU B, et al. Controllable synthesis of stereoregular polyesters by organocatalytic alternating copolymerizations of cyclohexene oxide and norbornene anhydrides[J]. Macromolecules, 2015, 48(11): 3431-3437.
13
SAINI P K, ROMAIN C, ZHU Y, et al. Di-magnesium and zinc catalysts for the copolymerization of phthalic anhydride and cyclohexene oxide[J]. Polymer Chemistry, 2014, 5(20): 6068-6075.
14
LIN L, LIANG J, XU Y, et al. Fully alternating sustainable polyesters from epoxides and cyclic anhydrides: economical and metal-free dual catalysis[J]. Green Chemistry, 2019, 21(9): 2469-2477.
15
JI H Y, CHEN X L, WANG B, et al. Metal-free, regioselective and stereoregular alternating copolymerization of monosubstituted epoxides and tricyclic anhydrides[J]. Green Chemistry, 2018, 20(17): 3963-3973.
16
KUMMARI A, PAPPURU S, GUPTA P K, et al. Metal-free Lewis pair catalyst synergy for fully alternating copolymerization of norbornene anhydride and epoxides: Biocompatible tests for derived polymers[J]. Materials Today Communications, 2019, 19: 306-314.
17
李帅,王昱博,季鹤源,等.(Salen)TiIVCl2配合物催化环氧化物和环酸酐开环交替共聚[J].高分子学报,2020,51:1039-1048.
18
SHI Z, JIANG Q, SONG Z, et al. Dinuclear iron(Ⅲ) complexes bearing phenylene-bridged bis(amino triphenolate) ligands as catalysts for the copolymerization of cyclohexene oxide with carbon dioxide or phthalic anhydride[J]. Polymer Chemistry, 2018, 9(38): 4733-4743.
19
MUNDIL R, HOŠT'ÁLEK Z, ŠEDĚNKOVÁ I, et al. Alternating ring-opening copolymerization of cyclohexene oxide with phthalic anhydride catalyzed by iron(Ⅲ) salen complexes[J]. Macromolecular Research, 2015, 23(2): 161-166.
20
CHENG S Y, RABNAWAZ M, KHAN F, et al. Synthesis of high molecular weight aromatic polyesters via integrated alternating ring—Opening copolymerization and chain extension methods[J]. Journal of Applied Polymer Science, 2018, DOI: 10.1002/app.47200.
21
HOŠŤÁLEK Z, TRHLÍKOVÁ O, WALTEROVÁ Z, et al. Alternating copolymerization of epoxides with anhydrides initiated by organic bases[J]. European Polymer Journal, 2017, 88: 433-447.
22
LI J, WANG M W, LIU Y, et al. Photoinduced reversible semicrystalline-to-amorphous state transitions of stereoregular azopolyesters[J]. Angewandte Chemie International Edition, 2021, 60(33): 17898-17903.
23
LI J, LIU Y, REN W M, et al. Asymmetric alternating copolymerization of meso-epoxides and cyclic anhydrides: Efficient access to enantiopure polyesters[J]. Journal of the American Chemical Society, 2016, 138(36): 11493-11496.
24
HU L F, ZHANG C J, CHEN D J, et al. Synthesis of high-molecular-weight maleic anhydride-based polyesters with enhanced properties[J]. ACS Applied Polymer Materials, 2020, 2(12): 5817-5823.
25
JIN L, ZENG H, ULLAH A. Rapid copolymerization of canola oil derived epoxide monomers with anhydrides and carbon dioxide (CO2)[J]. Polymer Chemistry, 2017, 8(41): 6431-6442.
26
PAPPURU S, CHAKRABORTY D, RAMKUMAR V, et al. Ring-opening copolymerization of maleic anhydride or L-Lactide with tert-butyl glycidyl ether by using efficient Ti and Zr benzoxazole-substituted 8-Hydroxyquinolinate catalysts[J]. Polymer, 2017, 123: 267-281.
27
LI H, LUO H, ZHAO J, et al. Well-defined and structurally diverse aromatic alternating polyesters aynthesized by aimple phosphazene catalysis[J]. Macromolecules, 2018, 51(6): 2247-2257.
28
乐天俊.结晶性含硫聚合物的精准合成[D].大连:大连理工大学,2020.
29
GHOSH S, GLÖCKLER E, WÖLPER C, et al. Comparison of the catalytic activity of mono-and multinuclear Ga complexes in the ROCOP of epoxides and cyclic anhydrides[J]. European Journal of Inorganic Chemistry, 2021, DOI: 10.1002/ejic.202101017.

评论

PDF(1337 KB)

Accesses

Citation

Detail

段落导航
相关文章

/