
非离子两亲型水性环氧树脂及其乳液的制备与性能研究
周典瑞, 王伟翰, 李天舒, 张宝艳
非离子两亲型水性环氧树脂及其乳液的制备与性能研究
Preparation and Properties of Non-Ionic Amphiphilic Waterborne Epoxy Resin and Its Emulsion
为进一步提升自乳化环氧树脂体系的乳液稳定性和树脂的综合性能,使用十二烷基琥珀酸酐(DDSA)与聚乙二醇单甲醚和双酚A型环氧树脂反应,制备了两亲型自乳化环氧树脂,并与使用甲基六氢苯酐(MHHPA)和邻苯二甲酸酐(PA)的体系分别进行了对比。通过乳液粒径、离心处理及表面张力测试评价了水性环氧树脂乳液的稳定性,另外对各自乳化体系树脂的固化行为、热稳定性以及与不同纤维间的界面强度进行了研究。结果表明:DDSA的引入可使乳液的表面张力下降至37.22 mN/m,有效提升了乳液稳定性;该自乳化体系树脂与碳纤维间的微脱黏强度欠佳,但其与超高分子量聚乙烯纤维间的界面强度较MHHPA和PA体系更优,具有优异的综合性能。
In order to further improve the emulsion stability and the intrinsic performance of self-emulsified epoxy resin, a novel amphipathic resin was synthesized from dodecylsuccinic anhydride (DDSA), methoxypolyethylene glycols and bisphenol-A epoxy. Similar systems based on different anhydrides including methyl hexahydrophthalic anhydride (MHHPA) as well as phthalic anhydride (PA) were prepared simultaneously for comparison. The stabilities of various emulsions were evaluated according to particle diameter, centrifugal stability and surface tension tests. Meanwhile, the curing behaviors, thermal resistances and interface properties between resins and diverse reinforcement fibers were also investigated. The results showed that introducing of DDSA could effectively enhance the stability of emulsion with the surface tension reducing to 37.22 mN/m. The microdebonding strength between the self-emulsifying resin system and carbon fiber is poor, but its interfacial strength with ultra-high molecular weight polyethylene fibers is better than that of the MHHPA and PA systems, and it has excellent overall performance.
Dodecylsuccinic anhydride / Self-emulsifying / Emulsion / Epoxy resin
TQ323.5
1 |
郑帼,刘会兵,周存,等.阴离子型水性环氧树脂制备及其应用性能[J].高分子材料科学与工程,2018,34(1):154-159.
|
2 |
|
3 |
|
4 |
张牧阳,沈志刚,李磊.碳纤维用水性乳液上浆剂的研究现状[J].合成纤维工业,2021,44(4):71-75.
|
5 |
陈洁,易长海,邹汉涛,等.水性环氧树脂制备复合材料的热性能研究[J].玻璃钢/复合材料,2010(4):46-48.
|
6 |
吕斌,李蕊,高党鸽.含羧基水性环氧树脂的制备及其性能[J].精细化工,2015,32(2):186-189.
|
7 |
龙杰,黄雪立,闫锦.基于相反转法合成的水性环氧树脂性能研究[J].塑料科技,2020,48(12):58-62.
|
8 |
|
9 |
|
10 |
赵立英,马会茹,孙志刚,等.非离子型活性乳化剂及其水性环氧树脂的制备和性能[J].化学学报,2010,68(2):174-180.
|
11 |
齐磊,刘扬涛,高猛,等.碳纤维表面处理和上浆剂的研究进展[J].纤维复合材料,2016,33(1):33-35.
|
12 |
刘明,陈力,张汉青,等.自乳化型水性环氧分散体的制备及性能研究[J].涂层与防护,2022,43(6):12-17, 23.
|
13 |
|
14 |
|
15 |
|
16 |
杜飞飞,姚唯亮,金贤君,等.阳离子型单组分水性环氧乳液的研制[J].上海涂料,2017,55(1):10-12.
|
17 |
史惠枝.改性环氧树脂碳纤维上浆剂的制备及应用研究[D].上海:东华大学,2022.
|
18 |
王洲一,黄一,洪士博,等.玻纤表面处理用水性聚氨酯乳液合成与性能研究[J].聚氨酯工业,2021,36(1):23-26.
|
19 |
|
20 |
张汉青,陈力,祝宝英,等.新型非离子水性环氧分散体的制备及性能研究[J].涂料工业,2022,52(2):1-6.
|
21 |
石红义,刘伟区,王政芳,等.反应型非离子水性环氧乳液的制备及性能[J].涂料工业,2018,48(12):41-46.
|
22 |
方泉涛.自乳化“两亲性”环氧上浆剂的制备及在复合材料界面性能上的研究[D].长春:吉林大学,2022.
|
23 |
田启蒙,吴盾,曹峥,等.新型环氧乳化剂的合成及其乳化稳定性研究[J].塑料科技,2022,50(3):53-56.
|
24 |
孙戒,袁爱林.表明活性剂化学[M].北京:化学工业出版社,2020.
|
25 |
张宝艳.先进复合材料界面技术[M].北京:航空工业出版社,2017.
|
26 |
|
/
〈 |
|
〉 |