有机硅微球协同膨胀型阻燃剂改性HDPE复合材料的制备与性能研究

蔡安惠, 宋立新, 陆遥, 李娟

PDF(2361 KB)
PDF(2361 KB)
塑料科技 ›› 2024, Vol. 52 ›› Issue (03) : 55-61. DOI: 10.15925/j.cnki.issn1005-3360.2024.03.011
加工与应用

有机硅微球协同膨胀型阻燃剂改性HDPE复合材料的制备与性能研究

作者信息 +

Preparation and Performance Study of HDPE Composites Modified by Organosilicon Microspheres Synergies Intumescent Flame Retardant

Author information +
History +

摘要

采用焦磷酸哌嗪(PAPP)和三聚氰胺氰尿酸盐(MCA)组成膨胀型阻燃剂(IFR),引入有机硅微球(SRB)作为协效剂,用于提高高密度聚乙烯(HDPE)的阻燃性能。通过垂直燃烧(UL-94)和氧指数(LOI)及锥形量热(Cone)测试研究复合材料的阻燃性能,结果表明:引入1%的SRB后,只需添加18%的IFR就能使P-5复合材料实现UL-94 V-0等级,且最大热释放速率(pHRR)和总热释放量(THR)较纯HDPE分别下降77.6%和16.7%。SRB促进IFR成炭,改善了炭层的质量。IFR降低了HDPE的力学性能,但SRB提升了HDPE/IFR体系的拉伸模量。

Abstract

The intumescent flame retardant (IFR) composed of piperazine pyrophosphate (PAPP) and melamine cyanurate (MCA) was used to improve the flame retardancy of high density polyethylene (HDPE) by introducing silicone microspheres (SRB) as synergist. The flame retardant properties of the composites were studied by vertical combustion (UL-94), oxygen index (LOI) and cone calorimetry (Cone) tests. The results showed that the P-5 composite could achieve UL-94 V-0 grade by adding only 18% IFR with 1% SRB, and the maximum heat release rate (pHRR) and total heat release (THR) decreased by 77.6% and 16.7% respectively compared with pure HDPE. SRB promoted the formation of carbon in IFR and improved the quality of carbon layer. IFR decreased the mechanical properties of HDPE, but SRB increased the tensile modulus of HDPE/IFR system.

关键词

膨胀型阻燃剂 / 有机硅微球 / 高密度聚乙烯 / 高质量炭层

Key words

Intumescent flame retardant / Silicon microspheres / High density polyethylene / High-quality carbon layer

中图分类号

TB332

引用本文

导出引用
蔡安惠 , 宋立新 , 陆遥 , . 有机硅微球协同膨胀型阻燃剂改性HDPE复合材料的制备与性能研究. 塑料科技. 2024, 52(03): 55-61 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.03.011
CAI An-hui, SONG Li-xin, LU Yao, et al. Preparation and Performance Study of HDPE Composites Modified by Organosilicon Microspheres Synergies Intumescent Flame Retardant[J]. Plastics Science and Technology. 2024, 52(03): 55-61 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.03.011

参考文献

1
JIAO Y H, WANG X L, WANG Y Z, et al. Thermal degradation and combustion behaviors of flame-retardant polypropylene/thermoplastic polyurethane blends[J]. Journal of Macromolecular Science, Part B, 2009, 48(5): 889-909.
2
XU J, LIU X, YANG W, et al. Influence of montmorillonite on the properties of halogen-antimony flame retardant polypropylene composites[J]. Polymer Composites, 2019, 40(5): 1930-1938.
3
YIN Z, CHEN K, WANG H, et al. Mechanical properties, flame retardancy, and smoke suppression of lanthanum organic montmorillonite/poly(vinyl chloride) nanocomposites[J]. Journal of Applied Polymer Science, 2016, DOI: 10.1002/app.43951.
4
曾倩,庄严,李金玉.一种磷–氮系阻燃剂的制备及其性能[J].工程塑料应用,2020,48(2):114-118.
5
XIAO X, HU S, ZHAI J, et al. Thermal properties and combustion behaviors of flame-retarded glass fiber-reinforced polyamide 6 with piperazine pyrophosphate and aluminum hypophosphite[J]. Journal of Thermal Analysis and Calorimetry, 2016, 125(1): 175-185.
6
肖雄,胡爽,董玲玲.聚焦磷酸哌嗪对聚丙烯材料燃烧性能的影响及其阻燃机理研究[J].塑料科技,2020,48(2):120-126.
7
SEVERINI F, GALLO R, AUDISIO G, et al. Reaction products of triglycidylisocyanurate with phosphoric acids and their use as flame retardant agents[J]. Polymer Degradation and Stability, 1987, 17(1): 71-80.
8
CHEN H, XIA W, WANG N, et al. Flame retardancy of biodegradable polylactic acid with piperazine pyrophosphate and melamine cyanurate as flame retardant[J]. Journal of Fire Sciences, 2022, 40(4): 254-273.
9
LIU Y, WANG R, ZHANG X, et al. Synergy between the aluminum diethyl hypophosphite (ADP) and melamine cyanurate (MCA) in stereo-complex type polylactic acid simultaneously towards fire retardancy and heat resistant properties[J]. Thermochimica Acta, 2023, DOI: 10.1016/j.tca.2023.179432.
10
仇艳艳,孙明媚,杜玉莹,等.焦磷酸哌嗪/MCA对聚丙烯的阻燃作用[J].现代塑料加工应用,2020,32(3):5-7.
11
张志豪.膨胀型阻燃体系和协效剂的表面改性及其在聚丙烯中的应用[D].北京:北京化工大学,2023.
12
LI N, XIA Y, MAO Z, et al. Synergistic effect of SiO2 on intumescent flame-retardant polypropylene[J]. Polymers and Polymer Composites, 2013, 21(7): 439-448.
13
AI L, LIU J, CHEN S, et al. Synthesis of melamine phenyl hypophosphite and its synergistic flame retardance with SiO2 on polypropylene[J]. Journal of Thermal Analysis and Calorimetry, 2022, 147(11): 6207-6217.
14
CHEN T, XIAO X, WANG J, et al. Fire, thermal and mechanical properties of TPE composites with systems containing piperazine pyrophosphate (PAPP), melamine phosphate (MPP) and titanium dioxide (TiO2)[J]. Plastics, Rubber and Composites, 2019, 48(4): 149-159.
15
CHENG C, SHUQIAN S, MINGMEI S, et al. Synergistic flame retardancy of ZnO with piperazine pyrophosphate/melamine polyphosphate in PP[J]. Polymer Testing, 2023, DOI: 10.1016/j.polymertesting.2022.107878.
16
ZHANG Y, ZENG X, LI H, et al. Zirconium phosphate functionalized by hindered amine: A new strategy for effectively enhancing the flame retardancy of addition-cure liquid silicone rubber[J]. Materials Letters, 2016, 174: 230-233.
17
WANG N, XU G, WU Y, et al. The influence of expandable graphite on double-layered microcapsules in intumescent flame-retardant natural rubber composites[J]. Journal of Thermal Analysis and Calorimetry, 2016, 123(2): 1239-1251.
18
ZHU P, XU M, LI S, et al. Preparation and investigation of efficient flame retardant TPE composites with piperazine pyrophosphate/aluminum diethylphosphinate system[J]. Journal of Applied Polymer Science, 2020, DOI: 10.1002/app.47711.
19
PAN Y, LUO Z, WANG B. Synergistic flame retardant effect of piperazine salt and ammonium polyphosphate as intumescent flame retardant system for polypropylene[J]. Journal of Applied Polymer Science, 2021, DOI: 10.1002/app.49813.
20
LIU G, QIU G. Study on the mechanical and morphological properties of toughened polypropylene blends for automobile bumpers[J]. Polymer Bulletin, 2013, 70(3): 849-857.

基金

宁波市科技创新2025重大专项(2022Z113)
宁波市自然科学基金(2021J149)
辽宁省教育厅科学研究项目(LQ2020008)

评论

PDF(2361 KB)

Accesses

Citation

Detail

段落导航
相关文章

/