
基于逆向工程和3D打印的踝足矫形器产品设计
宁天亮, 王坤, 王领彪, 韩鹏飞, 闫超伟, 李方祺
基于逆向工程和3D打印的踝足矫形器产品设计
Design of Ankle and Foot Orthosis Products Based on Reverse Engineering and 3D Printing
传统工艺如石膏制作的足踝矫形器存在气密性低、制作效率低、舒适度差等缺点。针对此问题,文章采用逆向工程结合3D打印技术对踝足矫形器进行定制式设计,获取足部STL数据,联合逆向建模软件Geomagic studio与Rodin 4D对矫形器关键部位修型,用Grasshopper进行轻量化设计,降低打印成本与质量,通过有限元分析验证其力学性能,使用聚乳酸通过FDM 3D打印技术打印实物,并进行穿戴测试。结果表明:重建后模型精度最大偏差为0.868 mm,标准偏差0.047 1 mm,模型构造精准。镂空后的矫形器在30 N碰撞集中载荷下,2 mm厚度矫形器晶格中部峰值应力为16.32 MPa,最大变形1.49 mm,晶格右侧峰值应力为15.64 MPa,最大变形0.78 mm,峰值应力均小于PLA材料抗拉强度,最大变形均小于产品本身厚度2 mm,力学强度性能符合后续生产设计要求,实物穿戴测试表明产品舒适度较好。
The traditional process of foot and ankle orthoses made of gypsum has the disadvantages of low air tightness, low production efficiency and poor comfort. In order to solve this problem, this paper uses reverse engineering combined with 3D printing technology to customize the design of the ankle foot orthosis, obtains the foot STL data, combines the reverse modeling software Geomagic studio and Rodin 4D to modify the key parts of the orthosis, uses Grasshopper to carry out lightweight design, reduces the printing cost and quality, verifies its mechanical properties through finite element analysis, uses polylactic acid to print the physical object by FDM 3D printing technology, and conducts wear tests. The results show that the maximum deviation of the model accuracy after reconstruction is 0.868 mm, and the standard deviation is 0.047 1 mm, and the model structure is accurate. Under the concentrated load of 30 N collision, the peak stress in the middle of the 2 mm thickness orthosis is 16.32 MPa, the maximum deformation is 1.49 mm, the peak stress on the right side of the lattice is 15.64 MPa, the maximum deformation is 0.78 mm, the peak stress is less than the tensile strength of PLA material, the maximum deformation is less than the thickness of the product itself by 2 mm, the mechanical strength performance meets the requirements of subsequent production design, and the physical wear test shows that the product comfort is good.
3D打印 / 踝足矫形器 / 逆向工程 / 轻量化设计 / 有限元分析
3D printing / Ankle foot orthosis / Reverse engineering / Lightweight design / Finite element analysis
TQ320.66 / TP391.7
1 |
辛艳喜,蔡高参,胡彪,等.3D打印主要成形工艺及其应用进展[J].精密成形工程,2021,13(6):156-164.
|
2 |
王岩,谭启涛,蒲放,等.增材制造技术在假肢矫形器领域的应用[J].Engineering,2020,6(11):118-136.
|
3 |
|
4 |
|
5 |
吴国庆.3D打印成型工艺及材料[M].北京:高等教育出版社,2018.
|
6 |
王君,李文涛,程群超,等.基于逆向工程的产品设计研究[J].塑料科技,2019,47(10):102-106.
|
7 |
徐永昌,成思源,杨雪荣.基于3D草图的个性化鞋楦设计[J].包装工程,2019,40(4):252-257.
|
8 |
姚明镜,唐璇,张春良,等.基于逆向工程和FDM技术的塑料产品设计与应用[J].塑料科技,2020,48(12):45-48.
|
9 |
成思源,谭昊,杨雪荣,等.基于正逆向技术结合的医疗护具创新设计[J].实验技术与管理,2020,37(6):95-99.
|
10 |
|
11 |
|
12 |
罗时杰,胥光申,王飞雷,等.定制化腕部矫形器的数字化制造实现与优化[J].西安工程大学学报,2019,32(2):206-211.
|
13 |
邵帅.偏瘫患者踝足矫形器参数化设计与定制研究[D].河北:燕山大学,2019.
|
14 |
张振江.3D打印康复外固定支具设计方法与应用研究[D].呼和浩特:内蒙古工业大学,2021.
|
15 |
项谦和,项赉.Geomagic Studio支持下的矿山生态修复“双碳”模型优化研究[J].测绘通报,2022(增刊2):282-285.
|
16 |
民政部职业技能鉴定指导中心.矫形器师[M].北京:中国社会出版社,2006.
|
17 |
廖政文.基于解剖形态学的3D打印四肢康复矫形器的数字化设计制作[D].南宁:广西医科大学,2018.
|
18 |
胡航帆.基于有限元分析的3D打印踝关节矫形器的设计与制作[D].昆明:昆明医科大学,2019.
|
19 |
|
20 |
王坤,赵卫国,刘庆,等.微型复杂曲面重构方法研究[J].机械设计,2017,34(4):114-118.
|
21 |
黄攀,汪泉,周红军,等.基于逆向工程的曲面建模与创新设计[J].塑料科技,2020,48(1):24-28.
|
22 |
路鹏程.3D打印踝足紧密接触型外固定支具的数字化设计、计算机仿真分析及临床应用[D].广州:南方医科大学,2021.
|
23 |
寇保福,霍鹏亮,王志霞,等.基于拓扑优化的排岩机受料臂架结构轻量化设计[J].机械设计,2022,39(6):28-34.
|
24 |
刘龙吉.基于拓扑优化的智能踝足矫形器轻量化设计[D].秦皇岛:燕山大学,2021.
|
25 |
彭志鑫,闫文刚,王坤,等.3D打印前臂外固定支具的有限元分析与结构优化设计[J].中国组织工程研究,2023,27(9):1340-1345.
|
26 |
吕宁,罗忠洁.PLA材料熔融沉积成型过程数值仿真分析[J].塑料,2023,52(3):74-80, 86.
|
27 |
|
28 |
刘震.基于3D打印技术的康复辅具数字化设计、材料优化和智能制造研究[D].广州:南方医科大学,2019.
|
29 |
李博.3D打印技术[M].北京:中国轻工业出版社,2017.
|
/
〈 |
|
〉 |