聚丙烯电容膜链结构与表面粗化、物理性能的关系

刘刚, 汪鹏, 姚成, 蔡希鹏, 贾磊, 蔡汉生, 王铠, 徐刚

PDF(1725 KB)
PDF(1725 KB)
塑料科技 ›› 2024, Vol. 52 ›› Issue (02) : 59-63. DOI: 10.15925/j.cnki.issn1005-3360.2024.02.012
加工与应用

聚丙烯电容膜链结构与表面粗化、物理性能的关系

作者信息 +

Relations Between Chain Architecture, Surface Roughening and Physical Properties in Polypropylene Capacitor Films

Author information +
History +

摘要

为了阐明链结构特征对双向拉伸聚丙烯薄膜(BOPP)表面粗化和本体性能的影响,对比研究三种不同链结构聚丙烯(PP)粒料的结晶行为与同质多晶性,测试了BOPP薄膜的空隙率、粗糙度、拉伸力学、热收缩、介电性能以及不同温度的电击穿场强。结果表明:低等规度(96.2%)、宽分子量分布(5.35)的链结构有利于生成β晶和均匀球晶形貌,确保获得理想的粗化形态。利用高等规度(97.4%)、窄分布(4.34)粒料制备的BOPP薄膜,其粗化形态虽不是最佳,但空隙率为9%,表面粗糙度为0.42 μm,能够满足电容膜行业标准要求。高等规度、窄分布薄膜的横向拉伸强度269 MPa、横向弹性模量3 692 MPa、击穿场强668 V/m(25 ℃)及518 V/m(125 ℃),与对照薄膜相比力学强度和电气性能得到明显提升。将PP链结构进行适当调整能够很好地兼顾表面粗化和本体性能,为设计、开发高性能的油浸式交流电容器用粗化膜提供有益启示。

Abstract

In order to elucidate the effect of chain structure characteristics on the surface roughening and bulk properties of biaxially oriented polypropylene films (BOPP). The crystallization behavior and homogeneous polycrystallinity of three polypropylene (PP) granules with different chain structures were compared. The porosity, roughness, tensile mechanics, thermal shrinkage, dielectric properties and electrical breakdown field strength of BOPP films at different temperatures were tested. The results show that the chain structure with low tacticity (96.2%) and wide molecular weight distribution (5.35) is conducive to the formation of β crystals and uniform spherulite morphology, ensuring the ideal roughening morphology. Although the roughening form of BOPP film prepared by high-tacticity (97.4%) and narrow-distribut (4.34) granules is not optimal, the porosity is 9% and the surface roughness is 0.42 μm, which can meet the requirements of the capacitive film industry standard. Compared with the control films, the transverse tensile strength is 269 MPa, the transverse elastic modulus is 3 692 MPa, and the breakdown field strengths are 668 V/m (25 ℃) and 518 V/m (125 ℃). Appropriate adjustment of the PP chain structure can take into account the surface roughening and bulk performance, and provide useful inspiration for the design and development of high-performance roughening film for oil-immersed AC capacitors.

关键词

电容器用粗化膜 / 同质多态性 / 等规度 / 分子量分布

Key words

Surface-roughened film for capacitor / Polymorphism / Tacticity / Molecular weight distribution

中图分类号

TQ325.1+4

引用本文

导出引用
刘刚 , 汪鹏 , 姚成 , . 聚丙烯电容膜链结构与表面粗化、物理性能的关系. 塑料科技. 2024, 52(02): 59-63 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.02.012
LIU Gang, WANG Peng, YAO Cheng, et al. Relations Between Chain Architecture, Surface Roughening and Physical Properties in Polypropylene Capacitor Films[J]. Plastics Science and Technology. 2024, 52(02): 59-63 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.02.012

参考文献

1
RYTOLUOTO I, GITSAS A, PASANEN S, et al. Effect of film structure and morphology on the dielectric breakdown characteristics of cast and biaxially oriented polypropylene films[J]. European Polymer Journal, 2017, 95: 606-624.
2
SINGH M, APATA I E, SAMANT S, et al. Nanoscale strategies to enhance the energy storage capacity of polymeric dielectric capacitors: Review of recent advances[J]. Polymer Reviews, 2021, DOI: 10.1080/15583724.2021.1917609.
3
PRATEEK, THAKUR V K, GUPTA R K. Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: Synthesis, dielectric properties, and future aspects[J]. Chemical Reviews, 2016, 116(7): 4260-4317.
4
DAI X Y, XING Z L, YANG W, et al. The effect of annealing on the structure and electric performance of polypropylene films[J]. International Journal of Polymer Science, 2022, DOI: 10.1155/2022/5970484.
5
LI Z L, DAI F M, WU Y, et al. Effect of crystalline morphology on electrical tree morphology and growth characteristics of PP insulation: From mesoscopic to macroscopic[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2023, 30(3): 989-996.
6
KAHOULI A, GALLOT-LAVALLEE O, RAIN P, et al. Structure effect of thin film polypropylene view by dielectric spectroscopy and X-ray diffraction: Application to dry type power capacitors[J]. Journal of Applied Polymer Science, 2015, DOI: 10.1002/app.42602.
7
TAMURA S, TAKINO K, YAMADA T, et al. Crater formation mechanism on the surface of a biaxially oriented polypropylene film[J]. Journal of Applied Polymer Science, 2012, DOI: 10.1002/app.36803.
8
ZHANG C, DAI X Y, XING Z L, et al. Investigation on the structure and performance of polypropylene sheets and bi-axially oriented polypropylene films for capacitors[J]. Chinese Journal of Polymer Science, 2022, 40: 1688-1696.
9
KAHOULI A, GALLOT-LAVALLEE O, RAIN P, et al. Dielectric features of two grades of bi-oriented isotactic polypropylene[J]. Journal of Applied Polymer Science, 2015, DOI: 10.1002/app.42224.
10
HO J S, GREENBAUM S G. Polymer capacitor dielectrics for high temperature applications[J]. ACS Applied Materials & Interfaces, 2018, 10(35): 29189-29218.
11
TABATABAEI S H, CARREAU P J, AJJI A. Effect of processing on the crystalline orientation, morphology, and mechanical properties of polypropylene cast films and microporous membrane formation[J]. Polymer, 2009, DOI: 10.1016/j.polymer.2009.06.071.
12
WU Y Q, YANG F, CAO Y, et al. Investigation on cavitation behavior of ultrahigh molecular weight polyethylene during stretching in wet process and dry process[J]. Polymer, 2021, DOI: 10.1016/j.polymer.2021.124081.
13
YAN F F, LI H C, CUI S L, et al. Effects of combined melt stretching and fast cooling fields on crystallization of high-density polyethylene[J]. Polymer, 2023, DOI: 10.1016/j.polymer.2023.125930.
14
WADA T, KITABAYASHI I, CHAMMINGKWAN P, et al. Physical properties of isotactic polypropylene blended with less crystalline polypropylene[J]. Macromolecular Reaction Engineering, 2022, DOI: 10.1002/mren.202200022.
15
RITAMAKI M, RYTOLUOTO I, LAHTI K. Performance metrics for a modern BOPP capacitor film[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(4): 1229-1237.
16
RICE C G C, BUFFET J C, TURNER Z R, et al. Efficient synthesis of thermoplastic elastomeric amorphous ultra-high molecular weight atactic polypropylene (UHMWaPP)[J]. Polymer Chemistry, 2022, DOI: 10.1039/D2PY00708H.
17
YUE Y, WANG X X, FENG J C. Concentration effect of a bis-amide nucleating agent on the shear-induced crystallization behavior of isotactic polypropylene[J]. ACS Applied Polymer Materials, 2021, 3(2): 1145-1156.
18
WANG B H, WANG G, HE S S, et al. Self-nucleation of beta-form isotactic polypropylene lamellar crystals in thin films[J]. Macromolecules, 2021, 54(24): 11404-11411.
19
ZHANG B, WANG B H, CHEN J, et al. Flow-induced dendritic β-form isotactic polypropylene crystals in thin films[J]. Macromolecules, 2016, 49(14): 5145-5151.
20
ZHAO J, LU C, GUO S, et al. Polymorphic structures phase diagram of shear-induced isotactic polypropylene/carbon fiber cylindrites[J]. Materials and Design, 2018, 150: 40-48.
21
CHEN P J, XU M, LI X Y, et al. The influence of melt status and beta-nucleation agent distribution on the crystallization of isotactic polypropylene[J]. CrystEngComm, 2022, DOI: 10.1039/D1CE01660A.
22
ZHANG C, DAI X Y, XING Z L, et al. Investigation on the structure and performance of polypropylene sheets and bi-axially oriented polypropylene films for capacitors[J]. Chinese Journal of Polymer Science, 2022, 40: 1688-1696.
23
IEDEMA P D, REMERIE K, SEEGERS D, et al. Tacticity changes during controlled degradation of polypropylene[J]. Macromolecules, 2021, DOI: 10.1021/acs.macromol.1c01383.
24
KANG J, CAO Y, LI H L, et al. Influence of the stereo-defect distribution on the crystallization behavior of Ziegler-Natta isotactic polypropylene[J]. Journal of Polymer Research, 2012, DOI: 10.1007/s10965-012-0037-9.
25
WANG Y X, CHEN S P, WU T, et al. Yielding behavior of isotactic polypropylene at elevated temperature understood at the spherulite level[J]. Polymer, 2023, DOI: 10.1016/j.polymer.2023.126150.
26
ZHANG B, CHEN J B, JI F F, et al. Effects of melt structure on shear-induced β-cylindrites of isotactic polypropylene[J]. Polymer, 2021, 53(8): 1791-1800.
27
DING L, XU R Z, PU L, et al. Pore formation and evolution mechanism during biaxial stretching of beta-iPP used for lithium-ion batteries separator[J]. Materials & Design, 2019, DOI: 10.1016/j.matdes.2019.107880.
28
WANG Y X, WU T, FU Q. Competition of shearing and cavitation effects on the deformation behavior of isotactic polypropylene during stretching[J]. Polymer, 2023, DOI: 10.1016/j.polymer.2023.125888.

评论

PDF(1725 KB)

Accesses

Citation

Detail

段落导航
相关文章

/