静电纺丝制备PAN/CNTs复合纤维及其VOCs吸附性能研究

谢立成, 姜艳, 张志军, 成骏峰

PDF(4184 KB)
PDF(4184 KB)
塑料科技 ›› 2024, Vol. 52 ›› Issue (02) : 44-48. DOI: 10.15925/j.cnki.issn1005-3360.2024.02.009
加工与应用

静电纺丝制备PAN/CNTs复合纤维及其VOCs吸附性能研究

作者信息 +

Preparation of PAN/CNTs Composite Fibers by Electrospinning and Study on Their VOCs Adsorption Properties

Author information +
History +

摘要

纳米纤维具有高强度、高比表面积、超细尺寸、高柔性和生物相容性等优势,广泛应用于各个领域。文章以静电纺丝技术为基础,制备了对挥发性有机化合物(VOCs)有吸附功能的聚丙烯腈/碳纳米管(PAN/CNTs)复合纳米纤维。通过优化实验参数,如纺丝液浓度、纺丝电压和接收板距离等,探究PAN纤维在静电纺丝过程中最适宜的参数组合。结果表明:当纺丝液浓度为12%,纺丝电压为18 kV,接收板距离为14 cm时,PAN纤维的形貌规整、尺寸均一,平均直径为200 nm。加入CNTs后,纤维直径增至400 nm,但PAN的结构没有改变。当CNTs含量为3%时,纤维的形貌最佳。VOCs吸附实验表明:CNTs的引入使得PAN纤维膜对二甲苯气体的吸附效率提升至90%左右。

Abstract

Nanofibers have the advantages of high strength, high specific surface area, ultra-fine size, high flexibility and biocompatibility, and are widely used in various fields. Polyacrylonitrile/carbon nanotube (PAN/CNTs) composite nanofibers with adsorption function for volatile organic compounds (VOCs) were prepared based on electrospinning technology. By optimizing the experimental parameters, such as spinning solution concentration, spinning voltage and receiving plate distance, the most suitable combination of parameters for PAN fibers in the electrospinning process was explored. The results show that when the concentration of spinning solution is 12%, the spinning voltage is 18 kV. When the distance between the receiving plates is 14 cm, the morphology of PAN fibers is regular, the size is uniform, and the average diameter is 200 nm. After the addition of CNTs, the fiber diameter increases to 400 nm, but the structure of PAN does not change. When the content of CNTs is 3%, the morphology of the fibers is the best. The adsorption experiment of VOCs shows that the adsorption efficiency of PAN fiber membrane for xylene gas increased to about 90% by the introduction of CNTs.

关键词

聚丙烯腈 / 碳纳米管 / 静电纺丝 / 挥发性有机化合物 / 吸附性能

Key words

Polyacrylonitrile / Carbon nanotubes / Electrospinning / VOCs / Adsorption properties

中图分类号

TB332

引用本文

导出引用
谢立成 , 姜艳 , 张志军 , . 静电纺丝制备PAN/CNTs复合纤维及其VOCs吸附性能研究. 塑料科技. 2024, 52(02): 44-48 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.02.009
XIE Li-cheng, JIANG Yan, ZHANG Zhi-jun, et al. Preparation of PAN/CNTs Composite Fibers by Electrospinning and Study on Their VOCs Adsorption Properties[J]. Plastics Science and Technology. 2024, 52(02): 44-48 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.02.009

参考文献

1
张寒珠,梁琳,郝福兰,等.芳纶纳米纤维对溶聚丁苯橡胶胶料性能的影响[J].橡胶工业,2023,70(3):195-200.
2
周川,杨小兵,颜晓珊,等.空气过滤用复合纳米纤维材料研究进展[J].功能材料,2018,49(5):5056-5060, 5069.
3
阳思思,吴红枚,刘玉媛,等.聚乳酸/纳米纤维素复合材料的制备与性能研究进展[J].塑料科技,2022,50(7):124-128.
4
ZHAO J, SHAO Q, GE S, et al. Advances in template prepared nano‐oxides and their applications: Polluted water treatment, energy, sensing and biomedical drug delivery[J]. The Chemical Record, 2020, 20(7): 710-729.
5
贺丹,权铭国,邵俊淞,等.静电纺丝制备锂硫电池用多孔碳纳米纤维[J].纺织导报,2023(4):60-62.
6
张伊航,张世钰,李巧丽,等.聚合物基锂电池纳米纤维隔膜研究进展[J].中国塑料,2023,37(5):116-122.
7
ABOLHASANI M M, NAEBE M, AMIRI M H, et al. Hierarchically structured porous piezoelectric polymer nanofibers for energy harvesting[J]. Advanced Science, 2020, DOI: 10.1002/advs.202000517.
8
刘科,钟志成,乔辉.纺丝参数对PS纳米纤维形态和直径的影响[J].塑料科技,2020,48(4):51-54.
9
BAVATHARANI C, MUTHUSANKAR E, WABAIDUR S M, et al. Electrospinning technique for production of polyaniline nanocomposites/nanofibres for multi-functional applications: A review[J]. Synthetic Metals, 2021, DOI: 10.1016/j.synthmet.2020.116609.
10
陈永辉,岳洪印,朱染染,等.静电纺抗菌材料的研究进展[J].化工新型材料,2023,51(3):79-83.
11
黄斐,谭栋玉,张武.静电纺丝纳米纤维及其复合材料在环境治理领域的应用进展[J].化工新型材料,2023,51(5):34-41.
12
张锐,马文妹,方鹏飞.基于静电纺丝聚偏氟乙烯基复合纳米纤维的摩擦-压电纳米发电机[J].武汉大学学报:理学版,2023,69(4):527-535.
13
XUE J, WU T, DAI Y, et al. Electrospinning and electrospun nanofibers: Methods, materials, and applications[J]. Chemical Reviews, 2019, 119(8): 598-5415.
14
曹如楼,杨卫民,丁玉梅,等.静电纺丝纳米纤维在水体重金属及染料吸附中的研究进展[J].塑料科技,2018,46(11):112-117.
15
周熠成,张勇,王林达,等.聚乳酸/热塑性淀粉/氮化硼/碳纳米管复合材料的制备与性能研究[J].塑料科技,2022,50(6):12-17.
16
赵新宇,谷雨晨,邱帅,等.PLA/CNTs复合材料的3D打印制备及其电磁屏蔽性能研究[J].塑料科技,2020,48(5):15-18.
17
SAKA A A, ABIDEMI W H, OLADEJO J T, et al. Isotherm, kinetics, thermodynamics and mechanism of metal ions adsorption from electroplating wastewater using treated and functionalized carbon nanotubes[J]. Journal of Environmental Chemical Engineering, 2023, DOI: 10.1016/j.jece.2022.109180.
18
付秋平,张荣彬,詹凤柳,等.氧化多壁碳纳米管/海藻酸钠复合材料对Pb(Ⅱ)的吸附性能研究[J].化工新型材料,2022,50(8):235-239.
19
赵明慧,刘忠军,姬帅,等.碳纳米管内N2吸附行为及等量吸附热的巨正则蒙特卡罗分子模拟[J].化学通报,2022,85(7):867-875.
20
王艺洁.氧化多壁碳纳米管对维生素B12吸附性能的研究[J].生物化工,2022,8(3):1-3, 8.
21
黄东升,陈难难,戴伟,等.氨基化磁性碳纳米管的制备及其染料吸附性能[J].林业工程学报,2022,7(4):100-106.
22
薛静,郭建英,张素红.磁性埃洛石纳米管的制备及其类芬顿降解废水中亚甲基蓝的研究[J].化工新型材料,2021,50(2):282-286.
23
张莉.碳纳米管的吸附性能及对水中污染物的吸附:综述[J].材料导报,2020,34(增刊1):72-77, 85.
24
林晨,郝智,汪朝宇,等.碳纳米管增强硅橡胶的导热和力学性能研究[J].有机硅材料,2021,35(4):22-27.
25
刘家庆,覃耀柳,农建政.掺加碳纳米管对纤维增强水泥基复合材料力学性能的影响[J].西部交通科技,2021(8):14-18, 35.
26
张亦可,贾凡,桂澄,等.碳纳米管/聚偏氟乙烯纳米纤维膜的制备及其压电性能[J].纺织学报,2021,42(3):44-49, 55.
27
冯钰翡,赵凯,胡正博,等.聚丙烯腈/羧基化碳纳米管纳米纤维膜制备及对铅离子的吸附效果[J].工程塑料应用,2023,51(4):105-110.
28
林志雄,曹峥,刘春林,等.静电纺丝制备PC/MWCNTs复合纤维及其性能研究[J].化工新型材料,2022,50(11):163-167.

基金

江苏省高等学校自然科学基金(22KJA430001)

评论

PDF(4184 KB)

Accesses

Citation

Detail

段落导航
相关文章

/