压电悬臂碳纤维层合板的振动控制研究

杨铮鑫, 王凯, 张达, 党鹏飞, 荆兆东

PDF(2388 KB)
PDF(2388 KB)
塑料科技 ›› 2024, Vol. 52 ›› Issue (02) : 25-30. DOI: 10.15925/j.cnki.issn1005-3360.2024.02.005
理论与研究

压电悬臂碳纤维层合板的振动控制研究

作者信息 +

Research on Vibration Control of Piezoelectric Cantilever Carbon Fiber Laminated Plate

Author information +
History +

摘要

为实现碳纤维复杂结构的振动控制,实验以压电悬臂碳纤维层合板为研究对象。基于Kirchhoff薄板理论和Hamilton原理,运用压电本构方程、假设模态法、广义坐标法及状态空间变量,构造压电悬臂碳纤维层合板的振动状态空间方程。对悬臂层合板进行应力、应变分析,确定压电陶瓷纤维片的铺设位置。采用PID控制方法、模糊控制方法以及模糊PID控制方法在MATLAB中设计控制器,对悬臂层合板的振动控制进行数值仿真。结果表明:三种控制器均可有效抑制层合板的振动,模糊PID控制器的抑振效果最好,该结果可为碳纤维复杂结构的振动控制提供参考。

Abstract

In order to realize the vibration control of the complex structure of carbon fiber, piezoelectric cantilever carbon fiber laminates were used as the research object in this experiment. Based on Kirchhoff's thin plate theory and Hamilton's principle, the vibration state space equation of piezoelectric cantilever carbon fiber laminates was constructed using piezoelectric constitutive equations, hypothetical mode method, generalized coordinate method and state-space variables. Stress and strain analysis were carried out on the cantilever laminated plate to determine the laying position of the piezoelectric ceramic fiber sheet. The PID control method, fuzzy control method and fuzzy PID control method were used to design the controller in MATLAB, and the vibration control of the cantilever laminated plate was numerically simulated. The results show that the three controllers can effectively suppress the vibration of the laminated plate, and the fuzzy PID controller has the best vibration suppression effect, which can provide a reference for the vibration control of carbon fiber complex structures.

关键词

悬臂层合板 / 压电陶瓷纤维片 / PID控制 / 模糊控制

Key words

Cantilever laminated plate / Piezoelectric ceramic fiber sheet / PID control / Fuzzy control

中图分类号

TB123 / TB535

引用本文

导出引用
杨铮鑫 , 王凯 , 张达 , . 压电悬臂碳纤维层合板的振动控制研究. 塑料科技. 2024, 52(02): 25-30 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.02.005
YANG Zheng-xin, WANG Kai, ZHANG Da, et al. Research on Vibration Control of Piezoelectric Cantilever Carbon Fiber Laminated Plate[J]. Plastics Science and Technology. 2024, 52(02): 25-30 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.02.005

参考文献

1
陈浩,陈继开,段应昌,等.轴向移动悬臂梁振动响应及模型预测控制[J].振动与冲击,2021,40(24):269-274.
2
吕胜利,吕国志.压电控制层合梁的振动分析[J].振动与冲击,1997(1):24-27, 98.
3
许琪楼.矩形悬臂板自由振动精确解法[J].振动与冲击,2001(4):54-58, 100.
4
吕书锋,李宏洁,张伟,等.金属/陶瓷功能梯度悬臂板的振动抑制研究[J].振动与冲击,2022,41(20):185-194.
5
刘艮,张伟.非线性能量阱在悬臂薄板振动抑制中的应用研究[J].振动工程学报,2019,32(5):786-792.
6
BAE J S, PARK J S, HWANG J H, et al. Vibration suppression of a cantilever plate using magnetically multimode tuned mass dampers[J]. Shock and Vibration, 2018, DOI: 10.1155/2018/3463528.
7
QIU Z C, WANG T X. Laser dot projection videogrammetry for vibration measurement and control of a piezoelectric flexible cantilever plate[J]. Aerospace Science and Technology, 2019, DOI: 10.1016/j.ast.2019.105397.
8
郭琛琛,刘涛,王青山,等.复合材料层合板自由振动的谱切比雪夫解法[J].振动与冲击,2022,41(11):285-290, 306.
9
蒋建平,李东旭.压电层合板高阶计算模型[J].振动与冲击,2008,120(4):89-94,171-172.
10
魏井君,邱志成,叶春德.基于模糊控制的压电挠性梁的振动主动控制实验研究[J].振动与冲击,2008,27(12):91-96, 182.
11
曹青松,周继惠,黎林,等.基于模糊自整定PID算法的压电柔性机械臂振动控制研究[J].振动与冲击,2010,29(12):181-186, 247.
12
曹青松,洪芸芸,周继惠,等.基于PSO自整定PID控制器的柔性臂振动控制[J].振动.测试与诊断,2014,34(6):1045-1049, 1168.
13
马驰骋,罗亚军,张希农,等.基于模糊PID控制器的变质量-柔性梁结构振动主动控制[J].振动与冲击,2018,37(23):197-203, 240.
14
盛贤君,钟声,姜涛.基于模糊分数阶PIλDμ的柔性结构振动主动控制[J].航空动力学报,2014,29(9):2091-2096.
15
QIU Z C, ZHANG X T, ZHANG X M, et al. A vision-based vibration sensing and active control for a piezoelectric flexible cantilever plate[J]. Journal of Vibration and Control, 2014, DOI: 10.1177/1077546314536752.
16
QIU Z C. Experiments on vibration suppression for a piezoelectric flexible cantilever plate using nonlinear controllers[J]. Journal of Vibration and Control, 2013, DOI: 10.1177/1077546313487762.
17
ZORIĆ N D, TOMOVIĆ A M, OBRADOVIĆ A M, et al. Active vibration control of smart composite plates using optimized self-tuning fuzzy logic controller with optimization of placement, sizing and orientation of PFRC actuators[J]. Journal of Sound and Vibration, 2019, 456: 173-198.
18
ZIEGLER J G, NICHOLS N B. Optimum settings for automatic controllers[J]. Journal of Dynamic Systems, Measurement, and Control, 1993, 115: 220-222.

评论

PDF(2388 KB)

Accesses

Citation

Detail

段落导航
相关文章

/