退役风电叶片PET回收处理流变性能研究

王靖, 陈煌, 黄明富, 黄逸舟, 刘洁, 朱光旭

PDF(1088 KB)
PDF(1088 KB)
塑料科技 ›› 2024, Vol. 52 ›› Issue (02) : 20-24. DOI: 10.15925/j.cnki.issn1005-3360.2024.02.004
理论与研究

退役风电叶片PET回收处理流变性能研究

作者信息 +

Study on Rheological Properties of Decommissioned Wind Power Blade PET Recovery Treatment

Author information +
History +

摘要

PET硬质闭孔泡沫作为夹芯材料广泛应用于风电叶片。为进一步做好退役叶片的规模化利用,实现风电叶片材料绿色可持续发展,PET材料的有效利用方面的研究日益受到关注。文章利用旋转流变仪研究了PET泡沫回收粉料(Re-fPET)的动态流变性能,Re-fPET回收料复合黏度对温度敏感,呈现明显的剪切变稀行为,在270 ℃以上复合黏度下降更明显。通过Cross方法外推求得零剪切黏度η0,并进一步根据Arrhenius计算黏流活化能,ΔEη0为241.29 kJ/mol,升高温度对链段间的解缠结作用明显。采用转矩流变仪研究了Re-fPET回收粉料的加工流变特性,在270 ℃以上,Re-fPET树脂扭矩值下降很快且达到平衡时间更短,平衡后扭矩值更小,熔体特性黏度明显下降,材料明显降解,不利于加工。

Abstract

PET rigid closed-cell foam is widely used as a sandwich material in wind turbine blades, in order to further improve the large-scale utilization of retired blades and realize the green and sustainable development of wind turbine blade materials, the effective utilization of PET materials has attracted increasing attention. In this paper, the dynamic rheological properties of PET foam recycled powder (Re-fPET) were studied by rotational rheometer, and the composite viscosity of Re-fPET recycled material was sensitive to temperature, showing obvious shear thinning behavior, and the composite viscosity decreased more obviously above 270 ℃. The zero shear viscosity η0 was obtained by extrapolation by the Cross method, the activation energy of viscosity was further calculated according to Arrhenius, and the ΔEη0 was 241.29 kJ/mol, which had a significant effect on the untangling of the segments. The rheological characteristics of Re-fPET recycled powder were studied using a torque rheometer. The torque value of Re-fPET resin decreased rapidly and the equilibrium time was shorter above 270 ℃. The torque value after equilibrium was smaller, the melt characteristic viscosity decreased significantly, and the material was significantly degraded, which was not conducive to processing.

关键词

风电叶片PET泡沫 / 黏流活化能 / 零剪切黏度 / 流变性能

Key words

Wind power blade PET foam / Viscous flow activation energy / Zero shear viscosity / Rheological property

中图分类号

TQ323.4+1

引用本文

导出引用
王靖 , 陈煌 , 黄明富 , . 退役风电叶片PET回收处理流变性能研究. 塑料科技. 2024, 52(02): 20-24 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.02.004
WANG Jing, CHEN Huang, HUANG Ming-fu, et al. Study on Rheological Properties of Decommissioned Wind Power Blade PET Recovery Treatment[J]. Plastics Science and Technology. 2024, 52(02): 20-24 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.02.004

参考文献

1
张俊伟,王昊.新能源风力发电技术解析[J].智能城市,2023,9(1):72-74.
2
赵靓,张荣琪.做好叶片回收利用,打通风电绿色循环路径[J].风能,2022(3):22-24.
3
汪鹏,王海珍,刘宝锋,等.PET泡沫的性能评估及其在风机叶片上的应用探讨[J].玻璃钢/复合材料,2016(7):60-62, 37.
4
孙春方,薛元德,胡培.复合材料泡沫夹层结构力学性能与试验方法[J].玻璃钢/复合材料,2005(2):3-6.
5
刘魁.风电叶片玻璃钢/复合材料夹层结构的泡沫芯材[J].塑料工业,2011,39(11):104-106.
6
李瑞芳.PET瓶回收再生技术进展[J].广东化工,2009,36(7):302-305.
7
刘胜强,贺升,周益辉.风电叶片废弃物回收技术综述[J].中国资源综合利用,2021(39):109-111.
8
谭亦武.废PET回收处理对碳减排和气候变化影响的研究[J].合成纤维,2010,39(7):1-8.
9
吴亮.PET回收再生技术及在服装设计中的应用[J].合成树脂及塑料,2021,38(6):67-70.
10
王恩洪,汪家宝,韩琛,等.废PET瓶回收利用及其再生料工程塑料化改性研究进展[J].化学推进剂与高分子材料,2010,8(1):28-33.
11
黄慧.ABS/PET共混体系增韧改性研究[D].长春:吉林大学,2016.
12
PASZUN D, SPYCHAJ T. Chemical recycling of poly(ethylene terephthalate)[J]. Industrial & Engineering Chemistry Research, 1997, DOI: 10.1021/ie960563c.
13
TAWFIK M E, ESKANDER S B. Chemical recycling of poly(ethylene terephthalate) waste using ethanolamine. Sorting of the end products[J]. Polymer Degradation & Stability, 2010, 95(2): 187-194.
14
杨晓东,刘保臣,刘春太,等.高分子聚合物熔体Cross黏度模型的改进[J].高分子材料科学与工程,2010,26(11):172-174.
15
李金平,李晶,张建.TPEE弹性体流变性能研究[J].合成纤维工业,2021,44(6):46-49.
16
RUBIO-HERNÁNDEZ F J, GOMEZ-MERINO A I, Delgado-García R, et al. An activation energy approach for viscous flow: A complementary tool for the study of microstructural evolutions in sheared suspensions[J]. Powder Technology, 2017, 308: 318-323.
17
康永刚,陈宏善,李明明.聚合物损耗行为的分数阶粘弹模型[J].材料科学与工程学报,2010,28(1):118-121.
18
赵培,朱蓉琪,顾宜.苯并噁嗪/环氧树脂/4,4′-二氨基二苯砜三元共混体系玻璃化转变温度的研究[J].高分子学报,2010(1):65-73.
19
安百强,聂海英,黄志萍.支化GAP分子结构与流变性能表征研究[J].固体火箭技术,2021,44(1):52-57.
20
方征平.高分子物理[M].杭州:浙江大学出版社,2005.
21
王伟,徐德时.壳聚糖浓溶液流变性质研究—零剪切黏度的测定和外推[J].高分子学报,1995(3):291-295.
22
冯茹森,郭拥军,吕鑫,等.疏水缔合聚合物流变学测量方法Ⅱ:零剪切黏度[J].石油钻采工艺,2011,33(4):55-58.
23
CROSS M M.Polymer rheology: Influence of molecular weight and polydispersity[J].Journal of Applied Polymer Science, 1969, 13(4):765-774.
24
HUILIER D, LENTANT C, TERRISSE J, et al. Modeling the packing stage in injection molding of thermoplastics[J]. Polymer Engineering Science, 1988, 28(24): 1637-1643.
25
金日光,华幼卿.高分子物理[M].北京:化学工业出版社,2006.
26
ANNABLE T, BUACALL R, ETTELAIE R, et al. The rheology of solutions of associating polymers: Comparison of experimental behavior with transient network theory[J]. Journal of Rheology, 1993, 37(4): 695-726.
27
许元泽.链段概念在高分子物理中的关键作用及其本质[C]//中国化学会高分子学科委员会.2011年全国高分子学术论文报告会论文摘要集.大连,2011.
28
杜启玫,周持兴.哈克转矩流变仪在聚合物加工中的应用[J].实验室研究与探索,2004(7):46-47.
29
张洁,郝晓东.HAAKE转矩流变仪及其应用[J].塑料科技,2003(5):41-43.
30
KARAYANNIDIS G P, ACHILIAS D S. Chemical recycling of poly(ethylene terephthalate)[J]. Macromolecular Materials and Engineering, 2007, 292(2): 128-146.

基金

高新技术产业科技创新引领计划(2021GK4053)

评论

PDF(1088 KB)

Accesses

Citation

Detail

段落导航
相关文章

/