通航飞机热固型环氧树脂固化动力学研究

丁镇源, 陈淑仙

PDF(1935 KB)
PDF(1935 KB)
塑料科技 ›› 2024, Vol. 52 ›› Issue (02) : 7-12. DOI: 10.15925/j.cnki.issn1005-3360.2024.02.002
理论与研究

通航飞机热固型环氧树脂固化动力学研究

作者信息 +

Curing Kinetics of Epoxy Resin for General Aviation Aircraft Composites

Author information +
History +

摘要

为获得通航飞机热固性环氧树脂的固化动力学特性方程和固化动力学参数,利用差示扫描量热法(DSC)在不同升温速率下对热固性环氧树脂进行非等温测试,并拟合实验曲线数值,得到热固性环氧树脂固化动力学特性。采用Ozawa-Wall-Flynn (OWF)和Kissinger-Akahira-Sunose(KAS)方法确定活化能,研究表观活化能随固化度的变化情况。基于Málek方法解析固化反应机理,结果表明:该树脂固化行为符合Sestak-Berggren自催化模型。通过非线性拟合(LSR)确定指前因子(A)、反应级数(mn),建立固化动力学模型。将模型预测的固化反应速率-固化度曲线与实验结果进行对比,结果表明:模型预测值和实验值基本吻合。因此,获得的固化动力学模型能够准确描述该树脂固化反应过程。研究工作为通航飞机复合材料的制造与修补过程制定固化工艺参数提供参考。

Abstract

In order to obtain the curing kinetic equation and curing kinetic parameters of thermosetting epoxy resin for general aviation aircraft, the non-isothermal test of thermosetting epoxy resin was carried out by differential scanning calorimetry (DSC) at different heating rates, and the curing kinetic properties of thermosetting epoxy resin were obtained by fitting the numerical values of the experimental curve. The Ozawa-Wall-Flynn (OWF) and Kissinger-Akahira-Sunose (KAS) methods were used to determine the activation energy, and the change of apparent activation energy with the degree of curing was studied. Based on the Málek method, the curing reaction mechanism was analyzed, and the results showed that the curing behavior of the resin was in line with the Sestak-Berggren autocatalytic model. The pre-index factor (A) and reaction order (m, n) were determined by nonlinear fitting (LSR), and the curing kinetic model was established. The curing reaction rate-curing degree curve predicted by the model was compared with the experimental results, and the results showed that the predicted values of the model were basically consistent with the experimental values. Therefore, the curing kinetic model obtained can accurately describe the curing reaction process of the resin. The research work provides a reference for the manufacturing and repair process of composite materials for general aviation aircraft, and the formulation of curing process parameters.

关键词

非等温差示扫描量热法 / 热固性环氧树脂 / 固化动力学 / 自催化模型

Key words

Non-isothermal differential scanning calorimetry / Thermosetting epoxy resin / Curing kinetics / Self-catalytic model

中图分类号

TQ320.1

引用本文

导出引用
丁镇源 , 陈淑仙. 通航飞机热固型环氧树脂固化动力学研究. 塑料科技. 2024, 52(02): 7-12 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.02.002
DING Zhen-yuan, CHEN Shu-xian. Curing Kinetics of Epoxy Resin for General Aviation Aircraft Composites[J]. Plastics Science and Technology. 2024, 52(02): 7-12 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.02.002

参考文献

1
STRUZZIERO G, TEUWEN J, SKORDOS A A. Numerical optimization of thermoset composites manufacturing processes: A review[J]. Composites Part A: Applied Science and Manufacturing, 2019, DOI: 10.1016/j.compositesa.2019.105499.
2
NAYANA V, KANDASUBRAMANIAN B. Advanced polymeric composites via commingling for critical engineering applications[J]. Polymer Testing, 2020, DOI: 10.1016/j.polymertesting.2020.106774.
3
陈杰,马春柳,刘邦,等.热固性树脂及其固化剂的研究进展[J].塑料科技,2019,47(2):95-102.
4
FARIA H, PEREIRA C, PIRES F A, et al. Kinetic models for the SR1500 and LY556 epoxies under manufacturer's recommended cure cycles[J]. European Polymer Journal, 2013, 49(10): 3328-3336.
5
PASCAULT J P, WILLIAMS R J J. Thermosetting polymers[M]. Handbook of polymer synthesis, characterization, and processing, 2013.
6
FRANCIS B. Cure kinetics of epoxy/thermoplastic blends[M]. Handbook of Epoxy Blends, 2017.
7
VYAZOVKIN S, BURNHAM A K, CRIADO J M, et al. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data[J]. Thermochimica Acta, 2011, 520(1/2): 1-19.
8
杨帆,粟俊华,胡亚坤,等.环氧封端聚苯醚/环氧树脂共混体系的固化动力学研究[J].塑料科技,2023,51(4):54-58.
9
王哲,祖愿,胡方圆,等.含杂萘联苯结构的环氧树脂固化动力学分析[J].化工学报,2022,73(2):681-688.
10
高腾龙,余建虎,许英杰.碳纤维/环氧树脂预浸料固化动力学建模研究[J].机械科学与技术,2022,41(7):1128-1135.
11
RAMOS J A, PAGANI N, RICCARDI C C, et al. Cure kinetics and shrinkage model for epoxy-amine systems[J]. Polymer, 2005, 46(10): 3323-3328.
12
LIONETTO F, BUCCOLIERO G, SILVIO PAPPADÀ S, et al. Resin pressure evolution during autoclave curing of epoxy matrix composites[J]. Polymer Engineering & Science, 2017, 57(6): 631-637.
13
OZAWA T. A new method of analyzing thermogravimetric data[J]. Bulletin of the Chemical Society of Japan, 1965, 38(11): 1881-1886.
14
FLYNN J H, WALL L A. General treatment of the thermogravimetry of polymers[J]. Journal of Research of the National Bureau of Standards Section A Physics and Chemistry, 1966, 70A(6): 487-523.
15
ZU Y, ZONG L S, WANG J Y, et al. Kinetic analysis of the curing of branched phthalonitrile resin based on dynamic differential scanning calorimetry[J]. Polymer Testing, 2021, DOI: 10.1016/j.polymertesting.2021.107062.
16
ZHAO S F. Curing kinetics, mechanism and chemorheological behavior of methanol etherified amino/novolac epoxy systems[J]. eXPRESS Polymer Letters, 2013, 8(2): 95-106.
17
GIBSON R L, SIMMONS M J H, STITT E H, et al. Kinetic modelling of thermal processes using a modified Sestak-Berggren equation[J]. Chemical Engineering Journal, 2021, DOI: 10.1016/j.cej.2020.127318.
18
YOUSEFI A, LAFLEUR P G Y, GAUVIN R. Kinetic studies of thermoset cure reactions: A review[J]. Polymer Composites, 1997, 18(2): 157-168.
19
MÁLEK J, CRIADO J M. A simple method of kinetic model discrimination. Part 1. Analysis of differential non-isothermal data[J]. Thermochimica Acta, 1994, 236: 187-197.
20
SENUM G I, YANG R T. Rational approximations of the integral of the Arrhenius function[J]. Journal of Thermal Analysis, 1977, 11(3): 445-447.

基金

国家自然科学基金民航联合基金重点资助项目(U1333201)
四川省科技计划项目(2019YJ0722)
四川省通用航空器维修工程技术研究中心资助课题(GAMRC2021YB10)

评论

PDF(1935 KB)

Accesses

Citation

Detail

段落导航
相关文章

/