气凝胶材料的制备及其在塑料中的应用研究进展

郭齐泰, 李萧, 唐帅, 王延明, 程耳号, 胡波, 马素德

PDF(653 KB)
PDF(653 KB)
塑料科技 ›› 2024, Vol. 52 ›› Issue (01) : 124-128. DOI: 10.15925/j.cnki.issn1005-3360.2024.01.027
综述

气凝胶材料的制备及其在塑料中的应用研究进展

作者信息 +

Research Progress on Preparation of Aerogel Materials and Their Application in Plastics

Author information +
History +

摘要

气凝胶具有三维网状骨架结构,其密度小、热导率低,利用气凝胶制备的功能高分子材料在特定领域表现出了优异性能。文章介绍了国内外气凝胶材料的发展历程、种类,气凝胶材料的制备方法,探讨了老化增强、高分子纤维增强、聚合物交联等气凝胶改性方法。总结了气凝胶在功能塑料方面的应用,分析了气凝胶对隔热阻燃功能塑料性能的影响、对吸附材料吸附量的影响、对催化剂载体塑料反应中的影响、对吸波塑料性能的影响等,对气凝胶在民用织物方面的应用进行展望。

Abstract

Aerogels have a three-dimensional network skeleton structure, which has low density and low thermal conductivity. Functional polymer materials prepared using aerogels have shown excellent properties in specific fields. The development history, types, and preparation methods of aerogels both at home and abroad are introduced, and the modification methods of aerogels such as aging reinforcement, polymer fiber reinforcement, and polymer crosslinking are discussed. The application of aerogels in functional plastics is summarized, and the effects of aerogels on the properties of thermal insulation and flame retardant functional plastics, the adsorption capacity of adsorption materials, the reaction of catalyst carrier plastics and the properties of microwave absorbing plastics are analyzed. The application of aerogels in civil fabrics is prospected.

关键词

气凝胶材料 / 干燥方法 / 老化改性 / 功能塑料

Key words

Aerogel material / Drying method / Aging modification / Functional plastics

中图分类号

TQ427 / TQ320

引用本文

导出引用
郭齐泰 , 李萧 , 唐帅 , . 气凝胶材料的制备及其在塑料中的应用研究进展. 塑料科技. 2024, 52(01): 124-128 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.01.027
GUO Qi-tai, LI Xiao, TANG Shuai, et al. Research Progress on Preparation of Aerogel Materials and Their Application in Plastics[J]. Plastics Science and Technology. 2024, 52(01): 124-128 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.01.027

参考文献

1
张志华,王文琴,祖国庆,等.SiO2气凝胶材料的制备、性能及其低温保温隔热应用[J].航空材料学报,2015,35(1):87-96.
2
马佳,沈晓冬,崔升,等.纤维增强二氧化硅气凝胶复合材料的制备和低温性能[J].材料导报,2015,29(20):43-46, 63.
3
余伟业.我国气凝胶材料研究与产业化现状[J].新材料产业,2021(2):33-37.
4
ZHANG Z, ZHAO S, CHEN G B, et al. Preparation and application of SiC bulk aerogel[J]. Advances in Chemistry, 2021, 33(9): 1511-1524.
5
FU Y, GUO Z. Natural polysaccharide-based aerogels a and their applications in oil water separations: A review[J]. Journal of Materials Chemistry A, 2022,10(15): 8129-8158.
6
张震,赵爽,陈国兵,等.碳化硅块状气凝胶的制备及应用[J].化学进展,2021,33(9):1511-1524.
7
何飞,骆金,李亚,等.纤维素/氧化硅有机-无机杂化复合气凝胶的研究进展[J].哈尔滨工业大学学报,2017,49(5):1-9.
8
罗伟,王林生,陈裕欣,等.有机-无机复合气凝胶的制备及其阻燃性能研究进展[J].复合材料学报,2021,38(7):2056-2069.
9
YING D, EUN H K. Research trends of the application of aerogel materials in clothing[J]. Fashion and Textiles, 2022, DOI: 10.1186/s40691-022-00298-5.
10
BANG T X, DA Z J, Yi Y, et al. Nanoclay-reinforced alginate aerogels: preparation and properties[J]. RSC advances, 2024, 14(2): 954-962.
11
BAETENS R, JELLE B P, GUSTAVSEN A. Aerogel insulation for building applications: A state-of-the-art review[J]. Energy & Buildings, 2011, 43(4): 761-769.
12
KIM K H, OH Y, ISLAM M F. Graphene coating makes carbon nanotube aerogels superelastic and resistant to fatigue[J]. Nature Nanotechnology, 2012, 7(9): 562-566.
13
王学宝,李晋庆,罗运军.石墨烯气凝胶/环氧树脂复合材料的制备及导电性能[J].复合材料学报,2013,30(6):1-6.
14
WORDSWORTH R, KERBER L, COCKELL C. Enabling martian habitabilty with silica aerogel via the solid-state greenhouse effect[J]. Nature Astronnomy, 2019, 3: 898- 903.
15
LAN D, GAO Z G, ZHAO Z H, et al. Application progress of conductive conjugated polymers in electrom agnetic wave absorbing composites[J]. Composites Communications, 2021, DOI: 10.1016/j.coco.2021.100767.
16
刘盼盼,贾振新,吕军军,等.有机-无机复合气凝胶研究进展[J].化学通报,2019,82(10):867-877.
17
孙骐,吴广明,周斌,等.疏水型SiO2气凝胶薄膜的制备[J].功能材料,2002(4):430-431, 434.
18
JIANG L, WEN Y Y, ZHU Z J, et al. A double cross-linked strategy to construct graphene aerogels with highly efficient methylene blue adsorption performance[J]. Chemosphere, 2021, DOI: 10.1016/j.chemosphere.2020.129169.
19
WANG B L, GAO C Y, HUANG Y T, et al. Preparation of superhy drophobic ny lon-56/cotton-interwoven fabric with dopamine-assisted use of thiol- ene click chemistry[J]. RSC Advances, 2021, 11: 10699-10709.
20
武晨浩,李昆锋,李肖华,等.二氧化硅气凝胶常压干燥工艺的研究进展[J].化工进展,2022,41(2):837-847.
21
周颖博,孔纲,赖德林,等.柔性二氧化硅气凝胶综述[J].宇航材料工艺,2021,51(3):8-16.
22
HUANG Y F, XIE Y L, ZHAO J A, et al. Variety of ZIF-8/MXene-based lightweight microwave-absorbing materials: Preparation and performances of ZnO/MXene nanocomposites[J]. Journal of Physical Chemistry C, 2022, 126(32): 1 3847-13853.
23
段玉洁,梁程耀,朱浩彤,等.纤维素气凝胶的制备及应用[J].塑料科技,2021,49(5):93-98.
24
ZHU W, JIANG X L, LIU F J, et al. Preparation of chitosan-graphene oxide composite aerogel by hydrothermal method and its adsorption property of methyl orange[J]. Polymers, 2020, DOI: 10.3390/polym12092169.
25
王丽娜.常压干燥法有机硅气凝胶的制备与性能研究[D].兰州:兰州交通大学,2021.
26
YU Y, WU X, GUO D, et al. Preparation of flexible, hydrophobic, and oleophilic silica aerogels based on a methyltriethoxysilane precursor[J]. Journal of Materials Science, 2014, 49(22): 7715-7722.
27
YU H, LIANG X, WANG J, et al. Preparation and characterization of hydrophobic silica aerogel sphere products by co-precursor method[J]. Solid State Sciences, 2015, 48: 155-162.
28
HE Z C, WU F, GUAN S J, et al. Polyamide amine aramid nanofiber composite aerogels as an ultra-high capacity adsorbent for congo red removal[J]. Journal of Materials Chemistry A, 2021, 9: 13320-13331.
29
OMRANPOUR H, MOTAHARI S. Effects of processing conditions on silica aerogel during aging: Role of solvent, time and temperature[J]. Journal of Non-Crystalline Solids, 2013, 379: 7-11.
30
EINARSRUD M A, HAEREID S. Preparation of transparent, monolithic silica xerogels with low density[J]. Journal of Sol-Gel Science and Technology, 1994, 2(1/3): 903-906.
31
HAEREID S, EINARSRUD M A, SCHERER G W. Mechanical strengthening of TMOS-based alcogels by aging in silane solutions[J]. Journal of Sol-Gel Science and Technology, 1994, 3(3): 199-204.
32
MOHANAPRIYA V, MISHRA R, MILITKY J, et al. Aerogel based nanoporous fibrous materials for thermal insulation[J]. Fibers and Polymers, 2014, 15: 1444-1449.
33
YI P, MO J, LIU R, et al. Study on corrosion behavior of w aterborne polyurethane coating with high thermal conductivity[J]. Applied Sciences, 2022, DOI: 10.3390/app12042021.
34
SAI H Z, XING L, XIANG J H, et al. Flexible aerogels based on an interpenetrating network of bacterial cellulose and silica by a non-supercritical drying process[J]. Journal of Materials Chemistry A, 2013, 1: 7963-7970.
35
CAPADONA L A, MEADOR M A B, ALUNNI A, et al. Flexible, low-density polymer crosslinked silica aerogels[J]. Polymer, 2006, 47(16): 5754-5761.
36
SABRI F, MARCHETTA J, SMITH K M. Thermal conductivity studies of a polyurea cross-linked silica aerogel-RTV 655 compound for cryogenic propellant tank applications in space[J]. Acta Astronautica, 2013, 91: 173-179.
37
MALEKI H, DUR E L, PORTUGAL A. Synthesis of lightweight polymer-reinforced silica aerogels with improved mechanical and thermal insulation properties for space applications[J]. Microporous & Mesoporous Materials, 2014, 197: 116-129.
38
AHMAD Z, Al-Sagheer F. Novel epoxy-silica nano-composites using epoxy-modified silica hyper-branched structure[J]. Progress in Organic Coatings, 2015, 80: 65-70.
39
LU J, WEN J X, YU Q H, et al. Cellulose nanospheres coated polylactic acid nonwoven membranes for recyclable use in oil water separation[J]. Cellulose, 2021, 28: 11417-11427.
40
ZHENG H, PAN M, WEN J, et al. Robust, transparent, and superhydrophobic coating fabricated with waterborne polyurethane and inorganic. nanoparticle composites[J]. Industrial & Engineering Chemistry Research, 2019, 58(19): 8050-8060.
41
KANAMORI K, AIZAWA M, NAKANISHI K, et al. Elastic organic-inorganic hybrid aerogels and xerogels[J]. Journal of Sol-Gel Science and Technology, 2008, 48(1/2): 172-181.
42
UYANNA O, NAJAFI H. Thermal protection systems for space vehicles: A review on technology development, current challenges and future prospects-ScienceDirect[J]. Acta Astronautica, 2020, 176: 341-356.
43
LI P W, WU H J, LIU Y C, et al. Preparation and optimization of ultra-light and thermal insulative aerogel foam concrete[J]. Construction and Building Materials, 2019, 205: 529-542.
44
WANG C H, CHENG H M, HONG C Q, et al. Lightweight chopped carbon fibre reinforced silica-phenolic resin aerogel nanocomposite: Facile preparation, properties and application to thermal protection[J]. Composites Part A: Applied Science and Manufacturing, 2018, 112: 81-90.
45
HASSAN E R E, ROSTOM M, FARGHALY F, et al. Bio-sorption for tannery effluent treatment using eggshell wastes; kinetics, isotherm and thermodynamic study[J]. Egyptian Journal of Petroleum, 2020, 29(4): 273-278.
46
MOTAHARI S, NODEH M, MAGHSOUDI K. Absorption of heavy metals using resorcinol formaldehyde aerogel modified with amine groups[J]. Desalination and Water Treatment, 2016, 57(36):16886-16897.
47
HUANG H, WANG Y, ZHANG Y, et al. Amino-functionalized graphene oxide for Cr(VI),Cu(II), Pb(I) and Cd(I) removal from industrial wastewater[J]. Open Chemistry, 2020, 18(1): 97-107.
48
武志刚,赵永祥,许临萍,等.气凝胶制备进展及其在催化方面的应用[J].化学研究与应用,2003(1):17-20.
49
KEARBY K, KISTLER S, SWANN S. Aerogel catalyst: Conversion of alcohols to amines[J]. Induatrial & Engineering Chemistry, 2002, DOI: 10.1021/ie50345a033.
50
BAGHERI S, ESRAFILI A, KERMANI M, et al. Performance evaluation of a novel rGO-Fe0/Fe3O4-PEI nanocomposite for lead and cadmium removal from aqueous solutions[J]. Journal of Molecular Liquids, 2020, DOI: 10.1016/j.molliq.2020.114422.
51
TOREZAN L, BORTOLUZ J, GUERRA N B, et al. Magnetic chitosan microspheres for the removal of methyl violet 2B from aqueous solutions[J]. Journal of Dispersion Science and Technology, 2021, DOI: 10.1080/01932691.2021.2008420.
52
ZHAO B, LI Y, ZENG Q W, et al. Growth of magnetic metals on carbon microspheres with synergetic dissipation abilities to broaden microwave absorption[J]. Journal of Materials Science & Technology, 2022, 107: 100-110.
53
WANG X, GUO X Y, JIA Z Q, et al. Fabrication of graphene oxide/polydopamine adsorptive membrane by stepwise in-situ growth for removal of rhodamine B from water[J]. Desalination, 2021, DOI: 10.1016/j.desal.2021.115220.
54
朱莉莉,康帅,胡祖明,等.MXene及其复合吸波材料组成与结构的研究进展[J].复合材料学报,2023,40(6):3167-3186.
55
MORIFI E, OFOMAJA A E, PILLAY K. Microwave assisted modified macadamia nutshells/Cu-Mn oxide composite for the removal of Pb(II) from aqueous solution[J]. Journal of Environmental Chemical Engineering, 2020, DOI: 10.1016/j.jece.2020.103822.
56
马勖凯.点击反应制备碳纳米管/金属氧化物/二氧化硅复合材料及吸波性能研究[D].淮南:安徽理工大学,2020.
57
XU D W, YANG S, PING C, et al. Synthesis of magnetic graphene aerogels for microwave absorption by in-situ pyrolysis[J]. Carbon: An International Journal Sponsored by the American Carbon Society, 2019, DOI: 10.1016/j.carbon.2019.02.005.

评论

PDF(653 KB)

Accesses

Citation

Detail

段落导航
相关文章

/