生物降解塑料的分类和应用研究进展

刘金凤, 者东梅, 杨勇, 胡孝义, 胡嘉伟, 丁树岩, 李永泉

PDF(660 KB)
PDF(660 KB)
塑料科技 ›› 2024, Vol. 52 ›› Issue (01) : 117-123. DOI: 10.15925/j.cnki.issn1005-3360.2024.01.026
综述

生物降解塑料的分类和应用研究进展

作者信息 +

Research Progress on Classification and Application of Biodegradable Plastics

Author information +
History +

摘要

为缓解不可降解塑料废弃物带来的白色污染问题,发展生物降解塑料以部分替代不可降解塑料是研究热点。文章概述了生物降解塑料,介绍了石化基生物降解塑料和生物基生物降解塑料的特点和研究进展,并对其在医疗卫生、包装和地膜中的应用进展进行综述。文章指出:目前生物降解塑料的发展受成本、使用性能(如阻隔性能、力学性能、耐热性能等)限制较大,通过优化加工工艺、选择合适的助剂可提高生物降解塑料的综合性能。未来的研究应该在保证生物降解材料性能的同时降低其生产成本。

Abstract

To alleviate the problem of white pollution caused by non-biodegradable plastic waste, the development of biodegradable plastics as a partial substitute for non-biodegradable plastics is a hot research topic. The article provides an overview of biodegradable plastics, introduces the characteristics and research progress of petrochemical-based biodegradable plastics and bio-based biodegradable plastics. It also summarizes their applications in medicine and healthcare, packaging, and agricultural mulch films. It is pointed out that the current development of biodegradable plastics is significantly constrained by limitations in cost and performance, such as barrier properties, mechanical properties, and thermal resistance. However, the optimization of processing techniques and selecting suitable additives can enhance the overall performance of biodegradable plastics. Future research should ensure the performance of biodegradable materials and reduce their production costs.

关键词

石化基生物降解塑料 / 生物基生物降解塑料 / 包装领域 / 农用地膜

Key words

Petrochemical-based biodegradable plastics / Bio-based biodegradable plastics / Packaging field / Agricultural mulch film

中图分类号

TQ322.9

引用本文

导出引用
刘金凤 , 者东梅 , 杨勇 , . 生物降解塑料的分类和应用研究进展. 塑料科技. 2024, 52(01): 117-123 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.01.026
LIU Jin-feng, ZHE Dong-mei, YANG Yong, et al. Research Progress on Classification and Application of Biodegradable Plastics[J]. Plastics Science and Technology. 2024, 52(01): 117-123 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.01.026

参考文献

1
BORRELLE S B, RINGMA J, LAW K L, et al. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution[J]. Science, 2020, 369: 1515-1518.
2
GEYER R, JAMBECK J R, LAW K L. Production, use, and fate of all plastics ever made[J]. Science Advances, 2017, DOI: 10.1126/sciadv.1700782.
3
卢赵津,李建新,王永川,等.基于废塑料制取活性炭对煤热解的催化动力学特性[J].节能,2023,42(1):68-71.
4
张宏博,刘焦萍,赵苏杭.生物可降解塑料发展现状及展望[J].化学工业,2023,43(4):9-12, 17.
5
刘旭,张楷文,张磊,等.城市生活垃圾各组分焚烧与热解行为研究[J].辽宁石油化工大学学报,2021,41(5):9-16.
6
张龙,史吉平,杜风光,等.我国二氧化碳可降解塑料的研究与应用进展[J].上海化工,2006(11):29-32.
7
谢举文.可降解塑料发展状况[J].广州化工,2021,49:28-29, 240.
8
翁云宣.生物降解塑料与生物基塑料[M].北京:化学工业出版社,2010.
9
全国塑料制品标准化技术委员会.降解塑料的定义、分类、标识和降解性能要求:GB/T 20197—2006[S].北京:中国标准出版社,2006.
10
全国环境管理标准化技术委员会环境意识设计分技术委员会.生态设计产品评价规范 第2部分:可降解塑料:GB/T 32163.2—2015[S].北京:中国标准出版社,2015.
11
MEDEIROS G A J, DISTANTE F, STORTI G, et al. Current trends in the production of biodegradable bioplastics: The case of polyhydroxyalkanoates[J]. Biotechnology Advances, 2020, DOI: 10.1016/j.biotechadv.2020.107582.
12
RAHMAN M H, BHOI P R. An overview of non-biodegradable bioplastics[J]. Journal of Cleaner Production, 2021, DOI: 10.1016/j.jclepro.2021.126218.
13
彭学成,苑东兴.可降解塑料发展现状[J].齐鲁石油化工,2021,49: 320-324.
14
VIKHAREVA I N, BUYLOVA E A, YARMUHAMETOVA G U, et al. An overview of the main trends in the creation of biodegradable polymer materials[J]. Journal of Chemistry, 2021, DOI: 10.1155/2021/5099705.
15
SACHAN R, WARKER S G, PURWAR R. An overview on synthesis, properties and applications of polycaprolactone copolymers, blends & composites[J]. Polymer-Plastics Technology and Materials, 2023, 62(3): 327-358.
16
GROSSEN P, WITZIGMANN D, SIEBER S, et al. PEG-PCL-based nanomedicines: A biodegradable drug delivery system and its application[J]. Journal of Controlled Release, 2017, 260: 46-60.
17
JANMOHAMMADI M, NOURBAKHSH M S. Electrospun polycaprolactone scaffolds for tissue engineering: A review[J]. International Journal of Polymeric Materials and Polymeric Biomaterials, 2019, 68(9): 527-539.
18
SIDDIQUI N, ASAWA S, BIRRU B, et al. PCL-based composite scaffold matrices for tissue engineering applications[J]. Molecular Biotechnology, 2018, 60(7): 506-532.
19
MARINCAS L. FARKAS N I, BARBU-TUDORAN L,et al. Deep eutectic solvent PCL-based nanofibers as drug delivery system[J]. Materials Chemistry And Physics, 2023, DOI: 10.1016/j.matchemphys.2023.127862.
20
GUASTAFERRO M, BALDINO L, CARDEA S, et al. Supercritical processing of PCL and PCL-PEG blends to produce improved PCL-based porous scaffolds[J]. Journal of Supercritical Fluids, 2022, DOI: 10.1016/j.supflu.2022.105611.
21
PAJOUMSHARIATI S, YAVARI S K, SHOKRGOZAR M A. Physical and biological modification of polycaprolactone electrospun nanofiber by panax ginseng extract for bone tissue engineering application[J]. Annals of Biomedical Engineering, 2015, 44(5): 1808-1820.
22
GUMEDE T P, LUYT A S, MULLER A J. Review on PCL, PBS, and PCL/PBS blends containing carbon nanotubes[J]. Express Polymer Letters, 2018, 12(6): 505-529.
23
HOMAEIGOHAR S, BOCCACCINI A R. Nature-derived and synthetic additives to poly(e-caprolactone) nanofibrous systems for biomedicine; an updated overview[J]. Frontiers in Chemistry, 2022, DOI: 10.3389/fchem.2021.809676.
24
MOE N C, BASBASAN A J, WINOTAPUN C, et al. Application of lignin nanoparticles in polybutylene succinate based antifungal packaging for extending the shelf life of bread[J]. Food Packaging and Shelf Life, 2023, DOI: 10.1016/j.fpsl.2023.101127.
25
MOHANRAJ K, SETHURAMAN S, KRISHNAN U M. Development of poly(butylene succinate) microspheres for delivery of levodopa in the treatment of Parkinson's disease[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2013, 101B(5): 840-847.
26
BARLETTA M, AVERSA C, AYYOOB M, et al. Poly(butylene succinate) (PBS): Materials, processing, and industrial applications[J]. Progress in Polymer Science, 2022, DOI: 10.1016/j.progpolymsci.2022.101579.
27
RUJNIC-SOKELE M, PILIPOVIC A. Challenges and opportunities of biodegradable plastics: A mini review[J]. Waste Management & Research, 2017, 35(2): 132-140.
28
MOCHANE M J, MAGAGULA S I, SEFADI J S, et al. A review on green composites based on natural fiber-reinforced polybutylene succinate (PBS)[J]. Polymers, 2021, DOI: 10.3390/polym13081200.
29
许文,李晔,王亚楠.PBS系列可降解塑料市场分析[J].化学工业,2021,39:49-57.
30
TIAN H L, WANG Z P, JIA S L, et al. Biodegradable foaming material of poly(butylene adipate-co-terephthalate) (PBAT)/poly(propylene carbonate) (PPC)[J]. Chinese Journal of Polymer Science, 2021, 40(2): 208-219.
31
FERREIRA F V, CIVIDANES L S, GOUVEIA R F, et al. An overview on properties and applications of poly(butylene adipate-co-terephthalate)-PBAT based composites[J]. Polymer Engineering & Science, 2019, 59(2): 7-15.
32
ELHAMNIA M, MOTLAGH G H, JAFARI S H. Improved barrier properties of biodegradable PBAT films for packaging applications using EVOH: Morphology, permeability, biodegradation, and mechanical properties[J]. Journal of Applied Polymer Science, 2023, DOI: 10.1002/app.53855.
33
WEI C, GUO P, LYU M, et al. High barrier poly(glycolic acid) modified poly(butylene adipate-co- terephthalate) blown films and accelerated ultraviolet degradability evaluation[J]. ACS Applied Polymer Materials. 2023, 5(5): 3457-3467.
34
MTIBE A, HLEKELELE L, KLEYI P E, et al. Fabrication of a polybutylene succinate (PBS)/polybutylene adipate-Co-terephthalate (PBAT)-based hybrid system reinforced with lignin and zinc nanoparticles for potential biomedical applications[J]. Polymers, 2022, DOI: 10.3390/polym14235065.
35
BOTTA L, TITONE V, TERESI R, et al. Biocomposite PBAT/lignin blown films with enhanced photo-stability[J]. International Journal of Biological Macromolecules, 2022, 217: 161-170.
36
WANG Y, LIU Q, ZHEN Z C, et al. Effects of mica modification with ethylene-vinyl acetate wax on the water vapor barrier and mechanical properties of poly-(butylene adipate-co-terephthalate) nanocomposite films[J]. Journal of Applied Polymer Science, 2021, DOI: 10.1002/app.50610.
37
ELLINGFORD C, SAMANTARAY P K, FARRIS S, et al. Reactive extrusion of biodegradable PGA/PBAT blends to enhance flexibility and gas barrier properties[J]. Journal of Applied Polymer Science, 2021, DOI: 10.1002/app.51617.
38
SUN X J, CHEN L L, WANG R, et al. Control of hydrolytic degradation of polyglycolic acid using chain extender and anti-hydrolysis agent[J]. Journal of Applied Polymer Science, 2022, DOI: 10.1002/app.52398.
39
SAMANTARAY P K, ELLINGFORD C, FARRIS S, et al. Electron beam-mediated cross-linking of blown film-extruded biodegradable PGA/PBAT blends toward high toughness and low oxygen permeation[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(3): 1267-1276.
40
PAN H W, WANG Y, JIA S L, et al. Biodegradable poly(butylene adipate-co-terephthalate)/poly(glycolic acid) films: Effect of poly(glycolic acid) crystal on mechanical and barrier properties[J]. Chinese Journal of Polymer Science, 2023, 41: 1123-1132.
41
CHENG H, CHEN L, MCCLEMENTS D J, et al. Starch-based biodegradable packaging materials: A review of their preparation, characterization and diverse applications in the food industry[J]. Trends in Food Science & Technology, 2021, 114: 70-82.
42
GAO W, WU W, LIU P, et al. Preparation and evaluation of hydrophobic biodegradable films made from corn/octenylsuccinated starch incorporated with different concentrations of soybean oil[J]. International Journal of Biological Macromolecules, 2020, 142: 376-383.
43
WANG H, KONG L, ZIEGLER G R. Aligned wet-electrospun starch fiber mats[J]. Food Hydrocolloids, 2019, 90: 113-117.
44
CHEN H, XIE F, CHEN L, et al. Effect of rheological properties of potato, rice and corn starches on their hot-extrusion 3D printing behaviors[J]. Journal of Food Engineering, 2019, 244: 150-158.
45
TAN B H, MUIRURI J K, LI Z B, et al. Recent progress in using stereocomplexation for enhancement of thermal and mechanical property of polylactide[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(10): 5370-5391.
46
SAMSURI M, ISWALDI I, PURNAMA P. The effect of stereocomplex polylactide particles on the stereocomplexation of high molecular weight polylactide blends[J]. Polymers, 2021, DOI: 10.3390/polym13122018.
47
TAIB N A A B, RAHMAN M R, HUDA D, et al. A review on poly lactic acid (PLA) as a biodegradable polymer[J]. Polymer Bulletin, 2022, 80: 1179-1213.
48
CASTANEDA-RODRIGUEZ S, GONZAKEZ-TORRES M, RIBAS-APRICIO R M, et al. Recent advances in modified poly (lactic acid) as tissue engineering materials[J]. Journal of Biological Engineering, 2023, 17(1): 21.
49
ZHAO X, LIU J, LI J, et al. Strategies and techniques for improving heat resistance and mechanical performances of poly(lactic acid) (PLA) biodegradable materials[J]. International Journal of Biological Macromolecules, 2022, 218: 115-134.
50
ZHANG N, ZHAO M, LIU G F, et al. Alkylated lignin with graft copolymerization for enhancing toughness of PLA[J]. Journal of Materials Science, 2022, 57(19): 8687-8700.
51
LI R Z, ZHU X H, PENG F Y, et al. Biodegradable, colorless, and odorless PLA/PBAT bioplastics incorporated with corn stover[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(24): 8870-8883.
52
朱亚凯,蔡文彬.可降解塑料产业发展概述[J].塑料包装,2021,31:19-21.
53
CHOOMMONGKOL V, RUANGSURIYA J, SUTTIARPORNP, et al. Polyester-releasing sesamin by electrospinning technique for the application of bone tissue engineering[J]. Designed Monomers and Polymers, 2022, 25(1): 231-244.
54
张博宇,王彦明,张志晓,等.聚乳酸的制备及应用研究进展[J].广东化工,2022,49(17):96-97.
55
IM S H, IM D H, PARK S J, et al. Stereocomplex polylactide for drug delivery and biomedical applications: A review[J]. Molecules, 2021, DOI: 10.3390/molecules26102846.
56
AU H T, PHAM L N, THU H T V, et al. Fabrication of an antibacterial non-woven mat of a poly(lactic acid)/chitosan blend by electrospinning[J]. Macromolecular Research, 2012, 20(1): 51-58.
57
王凇,刘亚男,孔祥平,等.L-PLA/S-PLA纤维的制备及其药物缓释性能研究[J].化工新型材料,2017,45(9):133-135.
58
WANG Y J, GOU M L, GONG C Y, et al. Pharmacokinetics and disposition of nanomedicine using biodegradable PEG/PCL Polymers as drug carriers[J]. Current Drug Metabolism, 2012, 13(4): 338-353.
59
MOYA-LOPEZ C, GONZALEZ-FUENTES J, BRAVO I, et al. Polylactide perspectives in biomedicine: From novel synthesis to the application performance[J]. Pharmaceutics, 2022, DOI: 10.3390/pharmaceutics14081673.
60
WANG J, TIAN L, LUO B, et al. Engineering PCL/lignin nanofibers as an antioxidant scaffold for the growth of neuron and Schwann cell[J]. Colloids and Surfaces B-Biointerfaces, 2018, 169: 356-365.
61
KOHAN M, LANCOS S, SCHNITZER M, et al. Analysis of PLA/PHB biopolymer material with admixture of hydroxyapatite and tricalcium phosphate for clinical use[J]. Polymers, 2022, DOI: 10.3390/polym14245357.
62
ZHOU Z L, YUN J H, LI J, et al. Comparison of the efficacy of different biodegradable membranes in guided bone/tissue regeneration: A systematic review and network meta-analysis[J]. Biomedical Materials, 2023, DOI: 10.1088/1748-605X/acc99a.
63
刘姿辰,禹宝庆.生物可降解聚乳酸用于骨修复的发展前景和研究价值[J].中国组织工程研究,2021,25(34):5552-5560.
64
SONG G, ZHAO H Q, LIU Q, et al. A review on biodegradable biliary stents: Materials and future trends[J]. Bioactive Materials, 2022, 17: 488-495.
65
MUKHERJEE C, VARGHESE D, KRISHNA J S, et al. Recent advances in biodegradable polymers-properties, applications and future prospects[J]. European Polymer Journal, 2023, DOI: 10.1016/j.eurpolymj.2023.112068.
66
SHAIKH S, YAQOOB M, AGGARWAL P. An overview of biodegradable packaging in food industry[J]. Current Research in Food Science, 2021, 4: 503-520.
67
刘彩云,陈衍玲,王景,等.生物降解材料的性能及应用研究进展[J].塑料科技,2022,50(7):81-85.
68
BURGOS N, ARMENTANO I, FORTUNATI E, et al. Functional properties of plasticized bio-based poly(lactic acid)_poly(hydroxybutyrate) (PLA_PHB) films for active food packaging[J]. Food and Bioprocess Technology, 2017, 10(4): 770-780.
69
URQUIJO J, GUERRICA-ECHEVARRIA G, EGUIAZABAL J I. Melt processed PLA/PCL blends: Effect of processing method on phase structure, morphology, and mechanical properties[J]. Journal of Applied Polymer Science, 2015, DOI: 10.1002/app.42641.
70
WANG H K, LIU X R, LIU J F, et al. Facile dispersion strategy to prepare polylactic acid/reed straw nanofiber composites with enhanced mechanical and thermal properties[J]. International Journal of Biological Macromolecules, 2022, 221: 278-287.
71
HOYOS-MERLANO N T, BORRONI V, RODRIGUEZ-BATILLER M J, et al. Nanoreinforcement as a strategy to improve physical properties of biodegradable composite films based on biopolymers[J]. Food Research International, 2022, DOI: 10.1016/j.foodres.2022.112178.
72
SHAO L Y, XI Y W, WENG Y X. Recent advances in PLA-based antibacterial food packaging and its applications[J]. Molecules, 2022, DOI: 10.3390/molecules27185953.
73
SANDER M. Biodegradation of polymeric mulch films in agricultural soils: Concepts, knowledge gaps, and future research directions[J]. Environmental Science & Technology, 2019, 53(5): 2304-2315.
74
PARIDA M, SHAJKUMAR A, MOHANTY S, et al. Poly(lactic acid) (PLA)-based mulch films: Evaluation of mechanical, thermal, barrier properties and aerobic biodegradation characteristics in real-time environment[J]. Polymer Bulletin, 2023, 80(4): 3649-3674.
75
SCIANCALEPORE C, TOGLIATTI E, GIUBILINI A, et al. Preparation and characterization of innovative poly(butylene adipate terephthalate)-based biocomposites for agri-food packaging application[J]. Journal of Applied Polymer Science, 2022, DOI: 10.1002/app.52370.
76
QIN P K, WU L B, LI B G, et al. Superior gas barrier properties of biodegradable PBST vs. PBAT copolyesters: A comparative study[J]. Polymers, 2021, DOI: 10.3390/polym13193449.
77
李燕,曹朵,贾凤安,等.生物基可降解塑料及其在农业领域的研究进展[J].应用化工,2020,49:2397-2400.
78
SANGEETHA V H, DEKA H, VARGHESE T O, et al. State of the art and future prospectives of poly(lactic acid) based blends and composites[J]. Polymer Composites, 2018, 39(1): 81-101.
79
RAHMAN M Z, RAHMAN M, MAHBUB T, et al. Advanced biopolymers for automobile and aviation engineering applications[J]. Journal of Polymer Research, 2023, DOI: 10.1007/s10965-023-03440-z.
80
PANDEY K, ANTIL R, SAHA S, et al. Poly(lactic acid)/thermoplastic polyurethane/wood flour composites: Evaluation of morphology, thermal, mechanical and biodegradation properties[J]. Materials Research Express, 2019, DOI: 10.1088/2053-1591/ab5398.

评论

PDF(660 KB)

Accesses

Citation

Detail

段落导航
相关文章

/