
基于计算机辅助工程的PPE充电口盖成型分析
高宏欣
基于计算机辅助工程的PPE充电口盖成型分析
Analysis of Injection Molding of PPE Charging Port Cover Based on Computer Aided Engineering
文章基于计算机辅助工程技术模拟了充电口盖的注塑成型,并计算分析其充电孔轴心偏差。通过分析浇口匹配性和流动阻力确定了最佳的浇口位置和进胶方案。采用初始工艺分析得到大孔轴心偏差为2.315 5 mm,不满足设计要求。以工艺参数为自变量设计正交试验,模拟计算不同工艺参数组合下的轴心偏差,探究工艺参数的优化方案。结果表明:模具温度及注射时间的影响为极显著,速度压力切换体积的影响为显著,料筒温度的影响为不显著,优化工艺参数为A1B3C1D1。通过工艺优化,大孔轴心偏差降至0.854 9 mm,小孔轴心偏差降至0.692 9 mm,并达到设计要求。仿真模拟及实际试模也验证了该优化工艺应用于实际的可行性。
Based on computer aided engineering technology, the injection molding of charging port cover is simulated, and the axial deviation of charging hole is calculated and analyzed. Through the analysis of gate matching and flow resistance, the best gate position and glue feeding scheme are determined. According to the initial process analysis, the shaft deviation of the large hole is 2.315 5 mm, which does not meet the design requirements. The orthogonal test was designed with process parameters as independent variables, and the axial deviation under different combination of process parameters was simulated and calculated, and the optimization scheme of process parameters was explored. The results show that the influence of mold temperature and injection time is extremely significant, the influence of velocity-pressure switching volume is significant, and the influence of barrel temperature is not significant. The optimized process parameter is A1B3C1D1. Through process optimization, the shaft deviation of the large hole is reduced to 0.854 9 mm, and the shaft deviation of the small hole is reduced to 0.692 9 mm, meeting the design requirements. Simulation and actual model test also verify the feasibility of the optimized process in practice.
Computer aided engineering / Charging port cover / Axial deviation / Orthogonal test
TQ320.66 / TP391.7
1 |
赖仕祯,周磊,何传欣.一种新能源车充电口盖设计[J].汽车科技,2021(3):121-124.
|
2 |
何肖奎,孙平.电动车格栅上充电口盖设计开发[J].内燃机与配件,2019(15):20-23.
|
3 |
李欢迎.加油口盖总成结构及发展方向[J].模具制造,2018,18(4):34-36.
|
4 |
王艺璇,马驰,陈宇辰,等.汽车加油(充电)口盖选型趋势研究[J].汽车科技,2020(5):53-58.
|
5 |
张建国,张志云,周王军.插电式混动汽车格栅上隐藏式充电口布置[J].汽车实用技术,2019(9):32-34.
|
6 |
魏立,宋志尧,沈鑫兵.电动车快慢充电口盖机构设计[J].农业装备与车辆工程,2021,59(1):134-138, 152.
|
7 |
唐伟,吕章娥,周子豪,等.浅谈电动汽车塑料充电口盖在复杂气候环境下的性能与验证[J].中国化工贸易,2020(32):253-254.
|
8 |
范明华,李妙,汤飞,等.电动汽车充电口盖系统的设计开发[J].汽车实用技术,2018(20):1-2, 6.
|
9 |
张亮,李海龙,何家志,等.充电(加油)口盖塑料基材性能及表面喷涂工艺对比分析[J].汽车零部件,2023(1):18-24.
|
10 |
冉明浩,武京斌,许瑆琥,等.塑料加油口盖厂内喷涂工艺规划研究[J].汽车实用技术,2021,46(2):152-155.
|
11 |
刘际泽.改性PPE的开发与应用[J].塑料,2011(5):117.
|
12 |
林权.基于正交试验法PPE+PA6注塑件收缩变形研究[J].陇东学院学报,2011,22(6):48-51.
|
13 |
夏建生,窦沙沙.CAD/CAE/CAM技术在塑料产品注射模中的应用[J].模具制造,2008,8(11):17-20.
|
14 |
易志斌,吴林倩,温慧,等.基于Moldflow的汽车操纵杆注塑成型质量分析与优化[J].塑料科技,2019,47(6):72-77.
|
15 |
罗龚,李书弘,袁原,等.基于MOLDFLOW的薄壁塑件注塑收缩正交实验研究[J].广东石油化工学院学报,2022,32(3):73-77.
|
16 |
安徽江淮汽车股份有限公司.电动车充电口盖:CN103754273B[P].2016-03-02.
|
17 |
尹春艳,韩忠冠,魏平,等.基于Moldflow快充充电口盖主体注射成型工艺分析[J].桂林航天工业学院学报,2022,27(3):335-340.
|
18 |
刘玲,马铭.网格划分技术在电话座机模流分析中的应用[J].模具制造,2012(4):11-14.
|
19 |
白红霞,毛兴燕,董勇.车用高强度改性聚苯醚工程塑料的制备和性能研究[J].塑料科技,2021,49(7):47-51.
|
20 |
赵春元.基于Moldflow的烟丝水分仪注塑模具浇口位置优化分析[J].塑料科技,2021,49(4):75-78.
|
21 |
邓然,胡嘉晨,钱佳豪,等.基于正交试验法的三相电机连接器注塑成型翘曲变形优化[J].塑料科技,2021,49(7):66-71.
|
/
〈 |
|
〉 |