防静电型水性阻尼涂料的制备及其性能研究

梁晓波, 邓云娇, 陈浩然, 王双权, 邓鹏飞

PDF(2152 KB)
PDF(2152 KB)
塑料科技 ›› 2024, Vol. 52 ›› Issue (01) : 11-16. DOI: 10.15925/j.cnki.issn1005-3360.2024.01.003
理论与研究

防静电型水性阻尼涂料的制备及其性能研究

作者信息 +

Preparation and Properties of Antistatic Water-Based Damping Coatings

Author information +
History +

摘要

噪声污染严重影响人们的生活质量,阻尼涂料作为一种有效的减振降噪材料,正向着高阻尼性能、宽温域、功能化的方向发展,水性阻尼涂料的电绝缘性使材料表面产生的静电积累,限制了阻尼涂料在特定环境中的应用。文章选用聚苯胺改性水性聚氨酯/丙烯酸酯树脂(WPUA-PANI)作为基础树脂,绢云母作为阻尼填料,加入其他助剂,制备了一系列具有防静电性能的水性阻尼涂料。研究了绢云母与基础树脂质量比对涂料结构与性能的影响。结果表明:所制备的涂料均为假塑性流体,具有较好的防流挂性。当绢云母与基础树脂质量比为30/70时,其水接触角和电阻率分别为110.9°和7.24×104 Ω·cm,有效阻尼温域值最大为122 ℃,较基础树脂得到明显提升。涂料具有良好的阻尼性、防静电性和耐水、耐溶剂性能。

Abstract

Noise pollution seriously affects people's quality of life. As an effective vibration and noise reduction material, damping coatings are developing in the direction of high damping performance, wide temperature range and functionalization. The electrical insulation of water-based damping coatings makes static electricity accumulate on the surface of materials, which limits the application of damping coatings in specific environments. Polyaniline modified water-based polyurethane/acrylate resin (WPUA-PANI) was selected as the base resin, sericite as the damping filler, and other additives were added to prepare a series of water-based damping coatings with antistatic properties. The influence of the mass ratio of sericite to base resin on the structure and properties of coatings was studied. The results show that the coatings prepared are pseudoplastic fluids and have good anti-sagging properties. When the mass ratio of sericite to base resin is 30/70, the water contact angle and resistivity are 110.9° and 7.24×104 Ω·cm, respectively, and the maximum effective damping temperature range is 122 ℃, which is obviously higher than that of the base resin. The coating has good damping property, antistatic property, water resistance, and solvent resistance.

关键词

阻尼涂料 / 聚氨酯 / 防静电性

Key words

Damping coatings / Polyurethane / Antistatic property

中图分类号

TQ630.1

引用本文

导出引用
梁晓波 , 邓云娇 , 陈浩然 , . 防静电型水性阻尼涂料的制备及其性能研究. 塑料科技. 2024, 52(01): 11-16 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.01.003
LIANG Xiao-bo, DENG Yun-jiao, CHEN Hao-ran, et al. Preparation and Properties of Antistatic Water-Based Damping Coatings[J]. Plastics Science and Technology. 2024, 52(01): 11-16 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.01.003

参考文献

1
钟宪准,于航,苏子雄,等.基于VR的声光环境对人体热舒适及生理反应的影响[J].节能,2023,42(8):1-5.
2
柴利萍.PU用量对SR/PU阻尼发泡材料性能的影响[J].塑料科技,2020,48(7):23-26.
3
李梦,徐梓轩,赵欣,等.水性阻尼涂料的阻尼性能研究与应用发展[J].粘接,2021,45(2):1-6.
4
LI T T, ZHANG X, WANG H Y, et al. Sound absorption and compressive property of PU foam‐filled composite sandwiches: Effects of needle‐punched fabric structure, porous structure, and fabric‐foam interface[J]. Polymers for Advanced Technologies, 2019, 31(3): 451-460.
5
WANG T M, CHEN S B, WANG Q H, et al. Damping analysis of polyurethane/epoxy graft interpenetrating polymer network composites filled with short carbon fiber and micro hollow glass bead[J]. Materials & Design, 2010, 31(8): 3810-3815.
6
MILLS D J, JAMALI S S, PAPROCKA K. Investigation into the effect of nano-silica on the protective properties of polyurethane coatings[J]. Surface and Coatings Technology, 2012, 209: 137-142.
7
GUO J S, HE Y, XIE D L, et al. Process investigating and modelling for the self-polymerization of toluene diisocyanate (TDI)-based polyurethane prepolymer[J]. Journal of Materials Science, 2015, 50(17): 5844-5855.
8
GURUNATHAN T, CHUNG J S. Physicochemical properties of amino-silane-terminated vegetable oil-based waterborne polyurethane nanocomposites[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(9): 4645-4653.
9
GUO J H, LIU Y C, CHAI T, et al. Synthesis and properties of a nano-silica modified environmentally friendly polyurethane adhesive[J]. RSC Advances, 2015, 5: 44990-44997.
10
WAN T, CHEN D J. Synthesis and properties of self-healing waterborne polyurethanes containing disulfide bonds in the main chain[J]. Journal of Materials Science, 2017, 52(1): 197-207.
11
LI B, JIANG X F, SUN H Y, et al. Novel green waterborne polyurethane-polytetrafluoroethylene BSLCs: Chemically optimized crosslinking extent for enhancing the mechanical and tribological properties[J]. Progress in Organic Coatings, 2021, DOI: 10.1016/j.porgcoat.2021.106457.
12
HAN Y T, HU J L, XIN Z Y. Facile preparation of high solid content waterborne polyurethane and its application in leather surface finishing[J]. Progress in Organic Coatings, 2019, 130: 8-16.
13
SHAN J H, JIANG L, WANG L H, et al. Improvement of low-temperature damping performance by the control of three-dimensional network structure formed by renewable oil in modified waterborne polyurethane[J]. Results in Materials, 2021, DOI: 10.1016/j.rinma.2021.100171.
14
ZHANG W H, MA F X, MENG Z H, et al. Green synthesis of waterborne polyurethane for high damping capacity[J]. Macromolecular Chemistry and Physics, 2021, DOI: 10.1002/macp.202000457.
15
陈君华,卢钰婷,罗贤佑,等.不同生物质改性水性聚氨酯研究进展[J].粘接,2023,50(11):6-9.
16
赵小亮,高怡安,陈海江.UV固化含氟聚硅氧烷改性水性聚氨酯的制备及性能研究[J].塑料科技,2022,50(9):54-57.
17
LI R, SHAN Z H. Research on structural features and thermal conductivity of waterborne polyurethane[J]. Progress in Organic Coatings, 2017, 104: 271-279.
18
祝庆龙,袁媛,陈慧.粉体填料对水性阻尼涂料阻尼性能的影响[J].中国涂料,2022,37(4):49-53.
19
于杰,战凤昌.阻尼涂料的阻尼性能影响因素[J].涂料工业,1994(4):1-4.
20
孙景志.宽温域高分子阻尼材料的分子设计与合成[D].长春:吉林大学,1996.
21
LIANG X B, DENG Y J, LI S S, et al. Waterborne polyurethane-acrylate-polyaniline: Interfacial hydrogen bonding for enhancing the antistatic, damping, and mechanical properties[J]. Polymers for Advanced Technologies, 2022, 33(9): 2667-2681.
22
LI S S, DENG Y J, FU Z Y, et al. Hydroxyl‐terminated polybutadiene based waterborne polyurethane acrylate emulsions: Synthesis, characterization, and damping property[J]. Journal of Applied Polymer Science, 2021, DOI: 10.1002/app.50300.
23
DENG Y J, ZHOU C, ZHANG M Y, et al. Effects of the reagent ratio on the properties of waterborne polyurethanes-acrylate for application in damping coating[J]. Progress in Organic Coatings, 2018, 122: 239-247.
24
PACKHAM D E. Surface energy, surface topography and adhesion[J]. International Journal of Adhesion and Adhesives, 2003, 23(6): 437-448.
25
YU F F, CAO L W, MENG Z H, et al. Crosslinked waterborne polyurethane with high waterproof performance[J]. Polymer Chemistry, 2016, 26(5): 3913-3922.
26
童身毅.水性涂料的流变性[J].中国涂料,2011,26(4):62-65.
27
胡国和,虎晓东,徐自冲,等.触变性及触变剂研究进展[J].应用化工,2023,10(30):1-6.
28
杨智慧.复合亲水单元修饰的水性聚氨酯结构设计、制备和性能研究[D].长春:长春工业大学,2021.
29
李婷,刘剑锋,郭家胜,等.不同导电填料对防静电涂层温度-电阻效应的影响[J].中国表面工程,2023,36(4):196-205.
30
RYBAK A, BOITEUXG, MELIS F, et al. Conductive polymer composites based on metallic nanofiller as smart materials for current limiting devices[J]. Composites Science and Technology, 2010, 70(2): 410-416.

基金

吉林省教育厅科学技术研究项目(JJKH20220682KJ)

评论

PDF(2152 KB)

Accesses

Citation

Detail

段落导航
相关文章

/