
新疆地区人群非综合征型唇腭裂与外周血FOXN3-SIN3A复合物表达量相关性研究
多力昆·吾甫尔, 地丽拜尔·依明江, 卡米力江·买买提明, 李军, 乌丽凡·托勒恒
新疆地区人群非综合征型唇腭裂与外周血FOXN3-SIN3A复合物表达量相关性研究
Correlation between FOXN3-SIN3A complex expression in peripheral blood and non-syndromic cleft lip and palate in Xinjiang
目的 研究FOXN3-SIN3A复合物表达量与新疆地区人群非综合征型唇腭裂(NSOC)的相关性。 方法 本研究选取就诊于新疆维吾尔自治区人民医院的NSOC患者60例为病例组,其中唇裂伴或不伴腭裂(NSCL/P)30例,单纯腭裂(CPO)30例,对照组为30例健康儿童。采用高通量二代测序技术及定量逆转录聚合酶链反应(RT-qPCR)检测各组外周血中FOXN3、SIN3A和NEAT1的表达量,分析受试者工作特征(ROC)曲线和曲线下面积(AUC),采用卡方检验对NSOC和对照组FOXN3、SIN3A和NEAT1的表达量进行比较。 结果 NSCL/P组和CPO组患者FOXN3、SIN3A、NEAT1基因表达较对照组均上升,差异均有统计学意义(P<0.05)。NSCL/P组FOXN3、SIN3A、NEAT1的基因序列AUC分别为0.933[95%CI=(0.864,1.000)]、0.822[95%CI=(0.713,0.932)]、1.000[95%CI=(1.000,1.000)];CPO组FOXN3、SIN3A、NEAT1的基因序列AUC分别为0.891[95%CI=(0.806,0.976)]、0.688[95%CI=(0.552,0.824)]、1.000[95%CI=(1.000,1.000)]。 结论 外周血FOXN3、SIN3A、NEAT1基因表达上升与新疆地区NSOC的发生存在相关性,可以对将来进一步研究FOXN3-SIN3A复合物作为生物标记物,从而对NSOC的早期筛查、患病预测和早期预防提供理论依据。
Objective This work aimed to study the correlation between FOXN3-SIN3A complex expression and non-syndromic oral clefts (NSOC) in Xinjiang. Methods In this study, 60 patients with NSOC attending the People’s Hospital of Xinjiang Uygur Autonomous Region were recruited into the case group, including 30 cleft lip with or without cleft palate (NSCL/P), 30 cleft palate only (CPO), and 30 healthy children in the control group. The expression levels of FOXN3, SIN3A, and NEAT1 in peripheral blood of each group were detected by high-throughput second-generation sequencing technology and quantitative reverse transcription polymerase chain reaction (RT-qPCR). Receiver operating characteristic (ROC) curve and area under the curve (AUC) were used to analyze the diagnostic efficiency of NSOC. Results The comparison of the NSOC and control groups showed that FOXN3, SIN3A, and NEAT1 genes increased compared with the control group. The differences were all statistically significant (P<0.05). The AUCs of FOXN3, SIN3A, and NEAT1 in the NSCL/P group were 0.933 [95%CI=(0.864, 1.000)], 0.822 [(95%CI=(0.713, 0.932)], and 1.000[95%CI= (1.000, 1.000)], respectively. The AUCs of FOX-N3, SIN3A, and NEAT1 in the CPO group were 0.891 [95%CI=(0.806, 0.976)], 0.688 [95%CI=(0.552, 0.824)], and 1.000 [95%CI=(1.000, 1.000)], respectively. Conclusion The results showed a correlation between the rising gene expression of FOXN3, SIN3A, and NEAT1 in peripheral blood and the occurrence of NSOC in Xinjiang. This work provides a theoretical basis for further study of the FOXN3-SIN3A complex as biomarkers to facilitate the early screening, disease prediction, and early prevention of NSOC.
非综合征型唇腭裂 / FOXN3 / SIN3A / NEAT1 / 生物标记物
non-syndromic cleft lip and palate / FOXN3 / SIN3A / NEAT1 / biomarker
R782.2
1 | Mossey PA, Little J, Munger RG, et al. Cleft lip and pa-late[J]. Lancet, 2009, 374(9703): 1773-1785. |
2 | Fan D, Wu S, Liu L, et al. Prevalence of non-syndromic orofacial clefts: based on 15,094,978 Chinese perinatal infants[J]. Oncotarget, 2018, 9(17): 13981-13990. |
3 | Leslie EJ, Marazita ML. Genetics of cleft lip and cleft palate[J]. Am J Med Genet C Semin Med Genet, 2013, 163C(4): 246-258. |
4 | Vijayan V, Ummer R, Weber R, et al. Association of WNT pathway genes with nonsyndromic cleft lip with or without cleft palate[J]. Cleft Palate Craniofac J, 2018, 55(3): 335-341. |
5 | Swibel Rosenthal LH, Walsh K, Thompson DM. Velopha-ryngeal incompetence: role in paediatric swallowing de-ficits[J]. Curr Opin Otolaryngol Head Neck Surg, 2018, 26(6): 356-366. |
6 | Zeraatkar M, Ajami S, Nadjmi N, et al. A qualitative study of children’s quality of life in the context of living with cleft lip and palate[J].Pediatric Health Med Ther, 2019, 10: 13-20. |
7 | 俞立英, 周艺, 吴斌, 等. 22例先天性腭咽功能不全的临床分析[J]. 中国临床医学, 2004, 11(1): 97-99. |
7 | Yu LY, Zhou Y, Wu B, et al. Clinical analysis of 22 cases of patients with congenital velopharyngeal insufficiency[J]. Chin J Clin Med, 2004, 11(1): 97-99. |
8 | Samaan G, Yugo D, Rajagopalan S, et al. Foxn3 is essential for craniofacial development in mice and a putative candidate involved in human congenital craniofacial defects[J]. Biochem Biophys Res Commun, 2010, 400(1):60-65. |
9 | 张蓉, 薛振恂. 维吾尔族先天性唇腭裂婴儿的病因病例对照研究[J]. 中国美容医学, 2003, 12(2): 176-179. |
9 | Zhang R, Xue ZX. Case-control study of uygur babies with cleft lip and palate[J]. Chin J Aesthet Med, 2003, 12(2): 176-179. |
10 | 赵志强, 多力昆·吾甫尔. 非综合征型唇腭裂与成纤维细胞生长因子3基因相关性的研究[J]. 中国美容整形外科杂志, 2018, 29(8): 482-484. |
10 | Zhao ZQ, Duolikun·Wufuer. Study on association of fibroblast growth factor 3 gene polymorphism with non-syndromic cleft lip and palate[J]. Chin J Aesthet Plast Surg, 2018, 29(8): 482-484. |
11 | Soleymani M, Ebadifar A, Khosravi M, et al. Association of rs2013162 and rs2235375 polymorphisms in IR-F6 gene with susceptibility to non-syndromic cleft lip and palate[J]. Avicenna J Med Biotechnol, 2022, 14(2): 181-185. |
12 | Nasroen SL, Maskoen AM, Soedjana H, et al. IRF6 rs-2235371 as a risk factor for non-syndromic cleft palate only among the Deutero-Malay race in Indonesia and its effect on the IRF6 mRNA expression level[J]. Dent Med Probl, 2022, 59(1): 59-65. |
13 | Hong JW, Yu Y, Wang LS, et al. BMP4 Regulates EMT to be involved in non-syndromic cleft lip with or without palate[J]. Cleft Palate Craniofac J, 2023, 60(11): 1462-1473. |
14 | Bahrami R, Dastgheib SA, Niktabar SM, et al. Association of BMP4 rs17563 polymorphism with nonsyndro-mic cleft lip with or without cleft palate risk: literature review and comprehensive meta-analysis[J]. Fetal Pe-diatr Pathol, 2021, 40(4): 305-319. |
15 | Khan MI, Cs P, Srinath N. Role of PAX7 gene rs766325 and rs4920520 polymorphisms in the etiology of non-syndromic cleft lip and palate: a genetic study[J]. Glob Med Genet, 2022, 9(3): 208-211. |
16 | Imani MM, Rahimi R, Sadeghi M. Linkage and association of PAX7 polymorphisms (rs742071, rs766325, and rs4920520) with the risk of non-syndromic cleft lip with/without cleft palate: a systematic review and meta-analysis[J]. Meta Gene, 2022, 31: 101007. |
17 | 张庭婷. 某医院近10年非综合征型唇腭裂临床资料回顾性分析[D]. 遵义: 遵义医科大学, 2021. |
17 | Zhang TT. Retrospective analysis of clinical data of patients with non-syndromic cleft lip with or without pa-late in recent 10 years in a hospital[D]. Zunyi: Zunyi Me-dical University, 2021. |
18 | Kaestner KH, Knochel W, Martinez DE. Unified nomenclature for the winged helix/forkhead transcription factors[J]. Genes Dev, 2000, 14(2): 142-146. |
19 | Worley ML, Patel KG, Kilpatrick LA. Cleft lip and palate[J]. Clin Perinatol, 2018, 45(4): 661-678. |
20 | Li W, Zhang Z, Liu X, et al. The FOXN3-NEAT1-SIN-3A repressor complex promotes progression of hormonally responsive breast cancer[J]. J Clin Invest, 2017, 127(9): 3421-3440. |
21 | 何航, 张蕊, 李艳. FOXN3蛋白在恶性肿瘤中的研究进展[J]. 现代肿瘤医学, 2018, 26(5): 804-809. |
21 | He H, Zhang R, Li Y. Research progress of FOXN3 in malignant neoplasms[J]. J Modern Oncol, 2018, 26(5): 804-809. |
22 | Schuff M, R?ssner A, Wacker SA, et al. FoxN3 is required for craniofacial and eye development of Xenopus laevis[J]. Dev Dyn, 2007, 236(1): 226-239. |
23 | Rinn JL, Chang HY. Genome regulation by long noncoding RNAs[J]. Annu Rev Biochem, 2012, 81: 145-166. |
24 | West JA, Davis CP, Sunwoo H, et al. The long noncoding RNAs NEAT1 and MALAT1 bind active chromatin sites[J]. Mol Cell, 2014, 55(5): 791-802. |
25 | Gao Y, Zang Q, Song H, et al. Comprehensive analysis of differentially expressed profiles of non?coding RNAs in peripheral blood and ceRNA regulatory networks in non-syndromic orofacial clefts[J]. Mol Med Rep, 2019, 20(1): 513-528. |
26 | Tang J, Lian SB, Bai Y, et al. Comprehensive analysis of plasma miRNA and related ceRNA network in non-syndromic cleft lip and/or palate[J]. Int J Pediatr Otorhinolaryngol, 2022, 162: 111306. |
27 | Yu W, Diao Y, Zhang Y, et al. Bioinformatic analysis of FOXN3 expression and prognostic value in pancreatic cancer[J]. Front Oncol, 2022, 12: 1008100. |
28 | Ding JF, Zhou Y, Xu SS, et al. Epigenetic control of LncRNA NEAT1 enables cardiac fibroblast pyroptosis and cardiac fibrosis[J]. Eur J Pharmacol, 2023, 938: 175398. |
29 | Chen Y, Huang C, Duan ZB, et al. LncRNA NEAT1 accelerates renal fibrosis progression via targeting miR-31 and modulating RhoA/ROCK signal pathway[J]. Am J Physiol Cell Physiol, 2023, 324(2): C292-C306. |
30 | Zhang D, Zhou Y, Huang R, et al. LncRNA affects epigenetic reprogramming of porcine embryo development by regulating global epigenetic modification and the downstream gene SIN3A[J]. Front Physiol, 2022, 13: 971965. |
/
〈 |
|
〉 |