基于随机森林和人工神经网络构建种植体周炎的诊断模型

杨浩然, 陈宇翔, 赵安娜, 程婷婷, 周建忠, 李自良

PDF(3904 KB)
PDF(3904 KB)
华西口腔医学杂志 ›› 2024, Vol. 42 ›› Issue (2) : 214-226. DOI: 10.7518/hxkq.2024.2023275
临床研究

基于随机森林和人工神经网络构建种植体周炎的诊断模型

  • 杨浩然1,2(), 陈宇翔1,2, 赵安娜1,2, 程婷婷1,2, 周建忠1,2, 李自良1,2()
作者信息 +

Construction of a diagnostic model based on random forest and artificial neural network for peri-implantitis

  • Yang Haoran1,2(), Chen Yuxiang1,2, Zhao Anna1,2, Cheng Tingting1,2, Zhou Jianzhong1,2, Li Ziliang1,2()
Author information +
History +

摘要

目的 本研究旨在揭示种植体周炎发生发展过程中参与调控的关键基因,并通过随机森林(RF)和人工神经网络(ANN)构建种植体周炎的诊断模型。 方法 本研究从GEO数据库中获取GSE33774、GSE106090和GSE57631数据集。对GSE33774和GSE106090数据集进行差异表达和功能富集分析,通过蛋白质互作网络(PPI)和RF筛选出关键基因,利用ANN建立种植体周炎的诊断模型,并在GSE33774和GSE57631数据集中进行验证。同时,构建转录因子-基因相互作用网络和转录因子-微小RNA(miRNA)调控网络。 结果 本研究共筛选出124个参与调控种植体周炎的差异表达基因(DEGs)。富集分析结果表明,DEGs主要和免疫受体活性蛋白及细胞因子受体活性相关,主要参与白细胞和中性粒细胞迁移的过程。PPI和RF筛选出6个关键基因,分别为CD38、CYBB、FCGR2A、SELL、TLR4和CXCL8。受试者操作特征曲线(ROC)表明ANN模型具有较好的诊断性。本研究还发现FOXC1、GATA2和NF-κB1可能是种植体周炎中重要的转录因子,hsa-miR-204可能是关键的miRNA。 结论 RF和ANN构建的种植体周炎的诊断模型可信度高,CD38、CYBB、FCGR2A、SELL、TLR4和CXCL8是潜在的诊断标志物。FOXC1、GATA2和NF-κB1可能是种植体周炎中重要的转录因子,hsa-miR-204作为关键的miRNA在其中扮演着重要角色。

Abstract

Objective This study aimed to reveal critical genes regulating peri-implantitis during its development and construct a diagnostic model by using random forest (RF) and artificial neural network (ANN). Methods GSE-33774, GSE106090, and GSE57631 datasets were obtained from the GEO database. The GSE33774 and GSE106090 datasets were analyzed for differential expression and functional enrichment. The protein-protein interaction networks (PPI) and RF screened vital genes. A diagnostic model for peri-implantitis was established using ANN and validated on the GSE33774 and GSE57631 datasets. A transcription factor-gene interaction network and a transcription factor-micro-RNA (miRNA) regulatory network were also established. Results A total of 124 differentially expressed genes (DEGs) involved in the regulation of peri-implantitis were screened. Enrichment analysis showed that DEGs were mainly associated with immune receptor activity and cytokine receptor activity and were mainly involved in processes such as leukocyte and neutrophil migration. The PPI and RF screened six essential genes, namely, CD38, CYBB, FCGR2A, SELL, TLR4, and CXCL8. The receiver operating characteristic curve (ROC) indicated that the ANN model had an excellent diagnostic performance. FOXC1, GATA2, and NF-κB1 may be essential transcription factors in peri-implantitis, and hsa-miR-204 may be a key miRNA. Conclusion The diagnostic model of peri-implantitis constructed by RF and ANN has high confidence, and CD38, CYBB, FCGR2A, SELL, TLR4, and CXCL8 are potential diagnostic markers. FOXC1, GATA2, and NF-κB1 may be essential transcription factors in peri-implantitis, and hsa-miR-204 plays a vital role as a critical miRNA.

关键词

种植体周炎 / 生物信息学 / 随机森林 / 人工神经网络 / 诊断模型

Key words

peri-implantitis / bioinformatics / random forest / artificial neural network / diagnostic model

中图分类号

R78

引用本文

导出引用
杨浩然, 陈宇翔, 赵安娜, 程婷婷, 周建忠, 李自良. 基于随机森林和人工神经网络构建种植体周炎的诊断模型. 华西口腔医学杂志. 2024, 42(2): 214-226 https://doi.org/10.7518/hxkq.2024.2023275
Yang Haoran, Chen Yuxiang, Zhao Anna, Cheng Tingting, Zhou Jianzhong, Li Ziliang. Construction of a diagnostic model based on random forest and artificial neural network for peri-implantitis. West China Journal of Stomatology. 2024, 42(2): 214-226 https://doi.org/10.7518/hxkq.2024.2023275

参考文献

1 Salvi GE, Cosgarea R, Sculean A. Prevalence and me-chanisms of peri-implant diseases[J]. J Dent Res, 2017, 96(1): 31-37.
2 Caton JG, Armitage G, Berglundh T, et al. A new classification scheme for periodontal and peri-implant disea-ses and conditions—Introduction and key changes from the 1999 classification[J]. J Periodontol, 2018, 89 (): S1-S8.
3 Sahrmann P, Gilli F, Wiedemeier DB, et al. The micro-biome of peri-implantitis: a systematic review and meta-analysis[J]. Microorganisms, 2020, 8(5): 661.
4 Derks J, Tomasi C. Peri-implant health and disease. A sy-stematic review of current epidemiology[J]. J Clin Perio-dontol, 2015, 42 : S158-S171.
5 Schwarz F, Jepsen S, Obreja K, et al. Surgical therapy of peri-implantitis[J]. Periodontol 2000, 2022, 88(1): 145-181.
6 Listl S, Frühauf N, Dannewitz B, et al. Cost-effectiveness of non-surgical peri-implantitis treatments[J]. J Clin Periodontol, 2015, 42(5): 470-477.
7 Petkovi?-Curcin A, Mati? S, Vojvodi? D, et al. Cytoki-nes in pathogenesis of peri-implantitis[J]. Vojnosanit Pre-gl, 2011, 68(5): 435-440.
8 Corrêa MG, Pimentel SP, Ribeiro FV, et al. Host respon-se and peri-implantitis[J]. Braz Oral Res, 2019, 33(): e066.
9 Insua A, Monje A, Wang HL, et al. Basis of bone meta-bolism around dental implants during osseointegration and peri-implant bone loss[J]. J Biomed Mater Res A, 2017, 105(7): 2075-2089.
10 Fragkioudakis I, Tseleki G, Doufexi AE, et al. Current concepts on the pathogenesis of peri-implantitis: a narrative review[J]. Eur J Dent, 2021, 15(2): 379-387.
11 Che D, Liu Q, Rasheed K, et al. Decision tree and ensemble learning algorithms with their applications in bioinformatics[J]. Adv Exp Med Biol, 2011, 696: 191-199.
12 Ji?ík M, Moulisová V, Hlavá? M, et al. Artificial neural networks and computer vision in medicine and surgery[J]. Rozhl Chir, 2022, 101(12): 564-570.
13 Ma CL, Yuan YB. A novel support vector machine with globality-locality preserving[J]. Sci World J, 2014, 2014: 872697.
14 Pfeifer B, Holzinger A, Schimek MG. Robust random forest-based all-relevant feature ranks for trustworthy AI[J]. Stud Health Technol Inform, 2022, 294: 137-138.
15 Lindon JC, Holmes E, Bollard ME, et al. Metabonomics technologies and their applications in physiological monitoring, drug safety assessment and disease diagnosis[J]. Biomarkers, 2004, 9(1): 1-31.
16 Tian Y, Yang J, Lan M, et al. Construction and analysis of a joint diagnosis model of random forest and artificial neural network for heart failure[J]. Aging (Albany NY), 2020, 12(24): 26221-26235.
17 Sun D, Peng H, Wu Z. Establishment and analysis of a combined diagnostic model of Alzheimer’s disease with random forest and artificial neural network[J]. Front Aging Neurosci, 2022, 14: 921906.
18 Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies[J]. Nucleic Acids Res, 2015, 43(7): e47.
19 Lai D, Ma W, Wang J, et al. Immune infiltration and diagnostic value of immune-related genes in periodontitis using bioinformatics analysis[J]. J Periodontal Res, 2023, 58(2): 369-380.
20 Gene Ontology Consortium. The Gene Ontology resour-ce: enriching a GOld mine[J]. Nucleic Acids Res, 2021, 49(D1): D325-D334.
21 Kanehisa M, Furumichi M, Sato Y, et al. KEGG: integrating viruses and cellular organisms[J]. Nucleic Acids Res, 2021, 49(D1): D545-D551.
22 Szklarczyk D, Gable AL, Nastou KC, et al. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets[J]. Nucleic Acids Res, 2021, 49(D1): D605-D612.
23 Otasek D, Morris JH, Bou?as J, et al. Cytoscape automation: empowering workflow-based network analysis[J]. Genome Biol, 2019, 20(1): 185.
24 Chin CH, Chen SH, Wu HH, et al. cytoHubba: identifying hub objects and sub-networks from complex interactome[J]. BMC Syst Biol, 2014, 8(): S11.
25 Montanez A. SDV: an open source library for synthetic data generation[D]. Cambridge: Massachusetts Institute of Technology, 2018.
26 Zhou G, Soufan O, Ewald J, et al. NetworkAnalyst 3.0: a visual analytics platform for comprehensive gene expression profiling and meta-analysis[J]. Nucleic Acids Res, 2019, 47(W1): W234-W241.
27 Baseri M, Radmand F, Hamedi R, et al. Immunological aspects of dental implant rejection[J]. Biomed Res Int, 2020, 2020: 7279509.
28 Fretwurst T, Garaicoa-Pazmino C, Nelson K, et al. Characterization of macrophages infiltrating peri-implantitis lesions[J]. Clin Oral Implants Res, 2020, 31(3): 274-281.
29 Li Y, Ling J, Jiang Q. Inflammasomes in alveolar bone loss[J]. Front Immunol, 2021, 12: 691013.
30 Kensara A, Hefni E, Williams MA, et al. Microbiological profile and human immune response associated with peri-implantitis: a systematic review[J]. J Prosthodont, 2021, 30(3): 210-234.
31 Deng S, Hu Y, Zhou J, et al. TLR4 mediates alveolar bone resorption in experimental peri-implantitis through regulation of CD45+ cell infiltration, RANKL/OPG ratio, and inflammatory cytokine production[J]. J Perio-dontol, 2020, 91(5): 671-682.
32 Pan K, Hu Y, Wang Y, et al. RANKL blockade alleviates peri-implant bone loss and is enhanced by anti-inflammatory microRNA-146a through TLR2/4 signaling[J]. Int J Implant Dent, 2020, 6(1): 15.
33 Zhang Q, Liu J, Ma L, et al. Wnt5a is involved in LOX-1 and TLR4 induced host inflammatory response in peri-implantitis[J]. J Periodontal Res, 2020, 55(2): 199-208.
34 Vacchini A, Mortier A, Proost P, et al. Differential effects of posttranslational modifications of CXCL8/interleukin-8 on CXCR1 and CXCR2 internalization and signaling properties[J]. Int J Mol Sci, 2018, 19(12): 3768.
35 Gabellini C, Trisciuoglio D, Desideri M, et al. Functio-nal activity of CXCL8 receptors, CXCR1 and CXCR2, on human malignant melanoma progression[J]. Eur J Cancer, 2009, 45(14): 2618-2627.
36 Tong H, Ke JQ, Jiang FZ, et al. Tumor-associated macrophage-derived CXCL8 could induce ERα suppression via HOXB13 in endometrial cancer[J]. Cancer Lett, 2016, 376(1): 127-136.
37 Zhang X, Wang Z, Hu L, et al. Identification of potential genetic biomarkers and target genes of peri-implantitis u-sing bioinformatics tools[J]. Biomed Res Int, 2021, 2021: 1759214.
38 Aleksandrowicz P, Brzezińska-B?aszczyk E, Koz?owska E, et al. Analysis of IL-1β, CXCL8, and TNF-α levels in the crevicular fluid of patients with periodontitis or healthy implants[J]. BMC Oral Health, 2021, 21(1): 120.
39 Glaría E, Valledor AF. Roles of CD38 in the immune response to infection[J]. Cells, 2020, 9(1): 228.
40 Chen D, Wu X, Liu Q, et al. Memory B cell as an indicator of peri-implantitis status: a pilot study[J]. Int J Oral Maxillofac Implants, 2021, 36(1): 86-93.
41 Munde EO, Okeyo WA, Raballah E, et al. Association between Fcγ receptor ⅡA, ⅢA and ⅢB genetic polymorphisms and susceptibility to severe malaria anemia in children in western Kenya[J]. BMC Infect Dis, 2017, 17(1): 289.
42 Elmer BM, Swanson KA, Bangari DS, et al. Gene deli-very of a modified antibody to Aβ reduces progression of murine Alzheimer’s disease[J]. PLoS One, 2019, 14(12): e0226245.
43 Saremi L, Esmaeilzadeh E, Ghorashi T, et al. Association of Fc gamma-receptor genes polymorphisms with chronic periodontitis and Peri-Implantitis[J]. J Cell Biochem, 2019, 120(7): 12010-12017.
44 Taylor JP, Tse HM. The role of NADPH oxidases in infectious and inflammatory diseases[J]. Redox Biol, 2021, 48: 102159.
45 Denson LA, Jurickova I, Karns R, et al. Clinical and genomic correlates of neutrophil reactive oxygen species production in pediatric patients with Crohn’s disease[J]. Gastroenterology, 2018, 154(8): 2097-2110.
46 Ivetic A. A head-to-tail view of L-selectin and its impact on neutrophil behaviour[J]. Cell Tissue Res, 2018, 371(3): 437-453.
47 Siddiqui K, George TP, Mujammami M, et al. The association of cell adhesion molecules and selectins (VCAM-1, ICAM-1, E-selectin, L-selectin, and P-selectin) with microvascular complications in patients with type 2 diabetes: a follow-up study[J]. Front Endocrinol (Lausan-ne), 2023, 14: 1072288.
48 Xia S, Qu J, Jia H, et al. Overexpression of Forkhead box C1 attenuates oxidative stress, inflammation and a-poptosis in chronic obstructive pulmonary disease[J]. Li-fe Sci, 2019, 216: 75-84.
49 Wang J, Li W, Zheng X, et al. Research progress on the forkhead box C1[J]. Oncotarget, 2017, 9(15): 12471-12478.
50 Ji Z, Chen S, Cui J, et al. Oct4-dependent FoxC1 acti-vation improves the survival and neovascularization of mesenchymal stem cells under myocardial ischemia[J]. Stem Cell Res Ther, 2021, 12(1): 483.
51 Aktar A, Heit B. Role of the pioneer transcription fac-tor GATA2 in health and disease[J]. J Mol Med (Berl), 2023, 101(10): 1191-1208.
52 Takai J, Shimada T, Nakamura T, et al. Gata2 heterozygous mutant mice exhibit reduced inflammatory respon-ses and impaired bacterial clearance[J]. iScience, 2021, 24(8): 102836.
53 Xie M, Li Z, Li X, et al. Identifying crucial biomarkers in peripheral blood of schizophrenia and screening therapeutic agents by comprehensive bioinformatics analysis[J]. J Psychiatr Res, 2022, 152: 86-96.
54 Mitchell JP, Carmody RJ. NF-κB and the Transcriptio-nal Control of Inflammation[J]. Int Rev Cell Mol Biol, 2018, 335: 41-84.
55 Cao N, Liu X, Hou Y, et al. 18-α-glycyrrhetinic acid alleviates oxidative damage in periodontal tissue by modulating the interaction of Cx43 and JNK/NF-κB pathways[J]. Front Pharmacol, 2023, 14: 1221053.
56 Teng H, Chen S, Fan K, et al. Dexamethasone liposomes alleviate osteoarthritis in miR-204/-211-deficient mice by repolarizing synovial macrophages to M2 phenotypes[J]. Mol Pharm, 2023, 20(8): 3843-3853.
57 Zhang N, Zhang RF, Zhang AN, et al. MiR-204 promotes fracture healing via enhancing cell viability of osteoblasts[J]. Eur Rev Med Pharmacol Sci, 2018, 22(1 ): 29-35.
58 Li N, Guo X, Liu L, et al. Molecular mechanism of miR-204 regulates proliferation, apoptosis and autophagy of cervical cancer cells by targeting ATF2[J]. Artif Cells Nanomed Biotechnol, 2019, 47(1): 2529-2535.
59 Grieco FA, Schiavo AA, Brozzi F, et al. The miRNAs miR-211-5p and miR-204-5p modulate ER stress in human beta cells[J]. J Mol Endocrinol, 2019, 63(2): 139-149.
60 Ye G, Wang P, Xie Z, et al. IRF2-mediated upregulation of lncRNA HHAS1 facilitates the osteogenic differentiation of bone marrow-derived mesenchymal stem cells by acting as a competing endogenous RNA[J]. Clin Transl Med, 2021, 11(6): e429.
61 Rigatti SJ. Random forest[J]. J Insur Med, 2017, 47(1): 31-39.
62 Carleo G, Troyer M. Solving the quantum many-body problem with artificial neural networks[J]. Science, 2017, 355(6325): 602-606.
63 Arji G, Safdari R, Rezaeizadeh H, et al. A systematic literature review and classification of knowledge discove-ry in traditional medicine[J]. Comput Methods Programs Biomed, 2019, 168: 39-57.

基金

云南省卫生和计划生育委员会医学后备人才项目(H-2017054)

评论

PDF(3904 KB)

Accesses

Citation

Detail

段落导航
相关文章

/