
一种全数字化前伸髁导斜度测量方法的准确性研究
周哲青, 王思谕, 袁泉, 岳莉, 杨胜涛
一种全数字化前伸髁导斜度测量方法的准确性研究
Evaluation of the accuracy of a fully digital method of measuring sagittal condylar inclination
目的 探究一种全数字化前伸髁导斜度(SCI)测量方法的准确性,同时对获取的受试者左、右侧SCI值进行对比分析,为临床实践提供参考。 方法 招募10名咬合关系良好、关节状态正常的受试者,分别使用方法A(传统机械面弓+基于实体架的实体前伸咬合记录)、B(基于面部扫描数据构建的虚拟面弓+基于虚拟
架的数字化前伸咬合记录)、C(电子面弓描记)测量受试者左、右侧SCI值。以传统机械面弓+基于实体
架的实体前伸咬合记录组和电子面弓描记组作为对照组,基于面部扫描数据构建的虚拟面弓+基于虚拟
架的数字化前伸咬合记录组为实验组,对3种方法获得的左、右侧SCI值进行统计学分析,评估基于面部扫描数据构建的虚拟面弓+基于虚拟
架的数字化前伸咬合记录的全数字化方法用于SCI测量的准确性,同时分析同一受试者左、右侧SCI值之间差异是否存在统计学意义。 结果 方法A测量的左、右侧SCI值为41.70°±7.09°、42.80°±8.62°,方法B测量的左、右侧SCI值为35.09°±12.49°、37.63°±12.10°,方法C测量的左、右侧SCI值为39.43°±8.72°、38.45°±6.91°。3种方法测量的SCI值之间差异无统计学意义(P>0.05),同时同一受试者左、右侧SCI值之间差异也无统计学意义(P>0.05)。 结论 基于虚拟面弓和虚拟咬合记录的全数字化SCI测量方法的准确性与基于机械面弓和实体咬合记录法、电子面弓描记法无差异,同一受试者左、右侧SCI值类似,临床诊疗过程中可以根据实际选择合适的SCI测量和设置策略。
Objective This clinical study aimed to evaluate the accuracy of a fully digital technique for measuring sagittal condylar inclination (SCI), as well as validating whether differences existed between the left and right SCI values of the same participant, to provide a reference for clinical practice. Methods Ten participants with good occlusal relationship and normal temporomandibular joint were recruited. Three methods were used to measure the SCI values of the participants, namely, A (mechanical facebow transferring and mechanical articulator-based measuring method with physical protrusive interocclusal registration), B (face scan-based virtual facebow and virtual articulator-based measuring method with digital protrusive interocclusal registration), and C (jaw motion tracking system-based measuring method). With the group subjected to methods A and C as the control, the SCI values obtained by the three methods were statistically analyzed. The left and right SCI values of the same participant were also compared. Results The left and right SCI values measured by method A were 41.70°±7.09° and 42.80°±8.62°, those by method B were 35.09°±12.49° and 37.63°±12.10°, and those by method C were 39.43°±8.72° and 38.45°±6.91°. No significant difference existed among the SCI values measured by the three methods (P>0.05). Meanwhile, no statistical difference existed between the SCI values on the left and right sides of the same participant (P>0.05). Conclusion The accuracy of the virtual facebow and digital protrusive occlusal registration based SCI measuring method was the same as that of mechanical facebow based and jaw motion tracking system-based methods. The SCI values on the left and right sides of the same participant were similar. Clinically, an appropriate SCI measurement and setting strategy can be selected based on the actual situations.
前伸髁导斜度 / 虚拟面弓 / 虚拟(牙合)架 / 面部扫描 / 电子面弓
sagittal condylar inclination / virtual facebow / virtual articulator / face scan / jaw motion tracking system
R783
1 | Reicheneder C, Gedrange T, Baumert U, et al. Variations in the inclination of the condylar path in children and adults[J]. Angle Orthod, 2009, 79(5): 958-963. |
2 | The glossary of prosthodontic terms: ninth edition[J]. J Prosthet Dent, 2017, 117(5S): e1-e105. |
3 | Cimi? S, Simunkovi? SK, Suncana Simoni? K, et al. Articulator-related registration and analysis of sagittal condylar inclination[J]. Acta Clin Croat, 2015, 54(4): 432-437. |
4 | Koralakunte PR, Aljanakh M. The role of virtual articulator in prosthetic and restorative dentistry[J]. J Clin Diagn Res, 2014, 8(7): ZE25-ZE28. |
5 | Lepidi L, Chen Z, Ravida A, et al. A full-digital technique to mount a maxillary arch scan on a virtual articulator[J]. J Prosthodont, 2019, 28(3): 335-338. |
6 | Farias-Neto A, Dias AH, de Miranda BF, et al. Face-bow transfer in prosthodontics: a systematic review of the li-terature[J]. J Oral Rehabil, 2013, 40(9): 686-692. |
7 | Lepidi L, Galli M, Mastrangelo F, et al. Virtual articulators and virtual mounting procedures: where do we stand[J]. J Prosthodont, 2021, 30(1): 24-35. |
8 | Ahangari AH, Torabi K, Pour SR, et al. Evaluation of the Cadiax Compact? Ⅱ accuracy in recording preadjusted condylar inclinations on fully adjustable articulator[J]. J Contemp Dent Pract, 2012, 13(4): 504-508. |
9 | Lam WYH, Hsung RTC, Choi WWS, et al. A clinical technique for virtual articulator mounting with natural head position by using calibrated stereophotogrammetry[J]. J Prosthet Dent, 2018, 119(6): 902-908. |
10 | Hong SJ, Choi Y, Park M, et al. Setting the sagittal condylar inclination on a virtual articulator using intraoral scan of protrusive interocclusal position and cone beam computed tomography[J]. J Prosthodont, 2020, 29(2): 185-189. |
11 | Solaberrieta E, Mínguez R, Barrenetxea L, et al. Direct transfer of the position of digitized casts to a virtual articulator[J]. J Prosthet Dent, 2013, 109(6): 411-414. |
12 | Yang S, Feng N, Li D, et al. A novel technique to align the intraoral scans to the virtual articulator and set the patient-specific sagittal condylar inclination[J]. J Pros-thodont, 2022, 31(1): 79-84. |
13 | Inoue N, Scialabba R, Lee JD, et al. A comparison of virtually mounted dental casts from traditional facebow records, average values, and 3D facial scans[J]. J Prosthet Dent, 2022, S0022-3913(22)00146-9. |
14 | Tannamala PK, Pulagam M, Pottem SR, et al. Condylar guidance: correlation between protrusive interocclusal record and panoramic radiographic image: a pilot study[J]. J Prosthodont, 2012, 21(3): 181-184. |
15 | dos Santos J Jr, Nelson S, Nowlin T. Comparison of condylar guidance setting obtained from a wax record versus an extraoral tracing: a pilot study[J]. J Prosthet Dent, 2003, 89(1): 54-59. |
16 | 王美青. (牙合)学[M]. 北京: 人民卫生出版社, 2020. |
16 | Wang MQ. Gnathology[M]. Beijing: People’s Medical Publishing House, 2020. |
17 | Christensen C. The problem of the bite[J]. Dent Cosmos, 1905, 47: 1184-1195. |
18 | Naqash TA, Chaturvedi S, Yaqoob A, et al. Evaluation of sagittal condylar guidance angles using computerized pantographic tracings, protrusive interocclusal records, and 3D-CBCT imaging techniques for oral rehabilitation[J]. Niger J Clin Pract, 2020, 23(4): 550-554. |
19 | Hangai K, Aridome K, Wang CH, et al. Clinical evaluation of semi-adjustable articulators: reproducibility of sa-gittal condylar path inclination assessed by a jaw-trac-king system with six degrees of freedom[J]. Nihon Hotetsu Shika Gakkai Zasshi, 2008, 52(3): 360-365. |
20 | Donegan SJ, Christensen LV. Sagittal condylar guidance as determined by protrusion records and wear facets of teeth[J]. Int J Prosthodont, 1991, 4(5): 469-472. |
21 | Yang S, Dong B, Zhang Q, et al. An indirect digital technique to transfer 3D printed casts to a mechanical articulator with individual sagittal condylar inclination settings using cbct and intraoral scans[J]. J Prosthodont, 2022, 31(9): 822-827. |
22 | Craddock FW. The accuracy and practical value of records of condyle path inclination[J]. J Am Dent Assoc, 1949, 38(6): 697-710. |
23 | Millstein PL, Kronman JH, Clark RE. Determination of the accuracy of wax interocclusal registrations[J]. J Prosthet Dent, 1971, 25(3): 189-196. |
24 | Gross M, Nemcovsky C, Tabibian Y, et al. The effect of three different recording materials on the reproducibility of condylar guidance registrations in three semi-adjusta-ble articulators[J]. J Oral Rehabil, 1998, 25(3): 204-208. |
25 | Schepke U, Meijer HJ, Kerdijk W, et al. Digital versus analog complete-arch impressions for single-unit premolar implant crowns: operating time and patient preference[J]. J Prosthet Dent, 2015, 114(3): 403-406.e1. |
26 | Kihara H, Hatakeyama W, Komine F, et al. Accuracy and practicality of intraoral scanner in dentistry: a literature review[J]. J Prosthodont Res, 2020, 64(2): 109-113. |
27 | Ma L, Liu F, Mei J, et al. A comparative study to measure the sagittal condylar inclination using mechanical articulator, virtual articulator and jaw tracking device[J]. J Adv Prosthodont, 2023, 15(1): 11-21. |
28 | Vitai V, Németh A, Sólyom E, et al. Evaluation of the accuracy of intraoral scanners for complete-arch scanning: a systematic review and network meta-analysis[J]. J Dent, 2023, 137: 104636. |
29 | O’Toole S, Bartlett D, Keeling A, et al. Influence of scanner precision and analysis software in quantifying three-dimensional intraoral changes: two-factor factorial experimental design[J]. J Med Internet Res, 2020, 22(11): e17150. |
30 | Dragus AC, Mihai A, Tanase G, et al. Intraindividual left-right side differences of sagittal condylar inclination (SCI) in different skeletal classes[J]. Healthcare (Basel), 2023, 11(9): 1341. |
31 | Das A, Muddugangadhar BC, Mawani DP, et al. Comparative evaluation of sagittal condylar guidance obtained from a clinical method and with cone beam computed tomography in dentate individuals[J]. J Prosthet Dent, 2021, 125(5): 753-757. |
/
〈 |
|
〉 |