
西格列汀激活基质细胞衍生因子-1/CXC趋化因子受体4信号通路对脂多糖诱导的人牙周膜干细胞增殖、凋亡、炎症和成骨分化的影响
唐小雪, 周政, 李启期, 姜丹丹
西格列汀激活基质细胞衍生因子-1/CXC趋化因子受体4信号通路对脂多糖诱导的人牙周膜干细胞增殖、凋亡、炎症和成骨分化的影响
Effects of sitagliptin activation of the stromal cell-derived factor-1/CXC chemokine receptor 4 signaling pathway on the proliferation, apoptosis, inflammation, and osteogenic differentiation of human periodontal ligament stem cells induced by lipopolysaccharide
目的 探讨西格列汀对脂多糖(LPS)诱导的炎症微环境下人牙周膜干细胞(hPDLSCs)增殖、凋亡、炎症和成骨分化的影响及分子机制。 方法 体外培养hPDLSCs,用不同浓度的西格列汀处理后检测细胞活力,以确定后续西格列汀实验浓度。采用1 µg/mL LPS刺激诱导24 h建立hPDLSCs炎症模型并分为空白组、对照组、西格列汀低浓度组(0.5 µmol/L)、西格列汀中浓度组(1 µmol/L)、西格列汀高浓度组(2 µmol/L)、西格列汀高浓度+基质细胞衍生因子-1(SDF-1)/CXC趋化因子受体4(CXCR4)通路抑制剂(AMD3100)组(2 µmol/L+10 µg/mL)。细胞计数试剂盒-8检测培养24、48、72 h后的hPDLSCs增殖活性;流式细胞术检测培养72 h后hPDLSCs凋亡情况;诱导成骨分化21 d后茜素红染色检测hPDLSCs成骨分化能力,试剂盒测定hPDLSCs中碱性磷酸酶(ALP)活性;酶联免疫吸附检测hPDLSCs培养上清液中炎症因子肿瘤坏死因子(TNF)-α、白细胞介素(IL)-1β、IL-6水平;实时荧光定量聚合酶链反应(RT-qPCR)检测hPDLSCs中成骨分化相关基因Runt相关转录因子2(RUNX2)、骨钙素(OCN)、骨桥蛋白(OPN)及SDF-1和CXCR4 mRNA表达;Western blot检测hPDLSCs中SDF-1、CXCR4蛋白表达。 结果 与空白组比较,对照组hPDLSCs增殖活性、矿化结节数量、染色强度、ALP活性和RUNX2、OCN、OPN mRNA及SDF-1、CXCR4 mRNA和蛋白表达水平显著降低,凋亡率、TNF-α、IL-1β、IL-6水平显著升高(P<0.05);与对照组比较,西格列汀低、中、高浓度组hPDLSCs增殖活性、矿化结节数量、染色强度、ALP活性和RUNX2、OCN、OPN mRNA及SDF-1、CXCR4 mRNA和蛋白表达水平依次升高,凋亡率、TNF-α、IL-1β、IL-6水平依次降低(P<0.05);AMD3100可部分逆转高浓度西格列汀对LPS诱导的hPDLSCs的作用效果(P<0.05)。 结论 西格列汀可能通过激活SDF-1/CXCR4信号通路促进LPS诱导的炎症微环境下hPDLSCs的增殖和成骨分化,抑制hPDLSCs凋亡和炎症反应。
Objective This study aimed to investigate the effects of sitagliptin on the proliferation, apoptosis, inflammation, and osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) in lipopolysaccharide (LPS)-induced inflammatory microenvironment and its molecular mechanism. Methods hPDLSCs were cultured in vitro and treated with different concentrations of sitagliptin to detect cell viability and subsequently determine the experimental concentration of sitagliptin. An hPDLSCs inflammation model was established after 24 h of stimulation with 1 µg/mL LPS and divided into blank, control, low-concentration sitagliptin (0.5 µmol/L), medium-concentration sitagliptin (1 µmol/L), and high-concentration sitagliptin (2 µmol/L), high-concentrationsitagliptin+stromal cell derived factor-1 (SDF-1)/CXC chemokine receptor 4 (CXCR4) pathway inhibitor (AMD3100) (2 µmol/L+10 µg/mL) groups. A cell-counting kit-8 was used to detect the proliferation activity of hPDLSCs after 24, 48, and 72 h culture. The apoptosis of hPDLSCs cultured for 72 h was detected by flow cytometry. After inducing osteogenic differentiation for 21 days, alizarin red staining was used to detect the osteogenic differentiation ability of hPDLSCs. The alkaline phosphatase (ALP) activity in hPDLSCs was determined using a kit. The levels of inflammatory factors [tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6] in the supernatant of hPDLSCs culture were detected by enzyme-linked immunosorbent assay. The mRNA expressions of osteogenic differentiation genes [Runt-associated transcription factor 2 (RUNX2), osteocalcin (OCN), osteopontin (OPN)], SDF-1 and CXCR4 in hPDLSCs were detected by real-time fluorescence quantitative polymerase chain reaction (RT-qPCR). Western blot analysis was used to determine SDF-1 and CXCR4 protein expression in hPDLSCs. Results Compared with the blank group, the proliferative activity, number of mineralized nodules, staining intensity, ALP activity, and RUNX2, OCN, OPN mRNA, SDF-1, and CXCR4 mRNA and protein expression levels of hPDLSCs in the control group significantly decreased. The apoptosis rate and levels of TNF-α, IL-1β, and IL-6 significantly increased (P<0.05). Compared with the control group, the proliferative activity, number of mineralized nodule, staining intensity, ALP activity, and RUNX2, OCN, OPN mRNA, SDF-1, and CXCR4 mRNA and protein expression levels of hPDLSCs in low-, medium-, and high-concentration sitagliptin groups increased. The apoptosis rate and levels of TNF-α, IL-1β, and IL-6 decreased (P<0.05). AMD3100 partially reversed the effect of high-concentration sitagliptin on LPS-induced hPDLSCs (P<0.05). Conclusion Sitagliptin may promote the proliferation and osteogenic differentiation of hPDLSCs in LPS-induced inflammatory microenvironment by activating the SDF-1/CXCR4 signaling pathway. Furthermore, it inhibited the apoptosis and inflammatory response of hPDLSCs.
西格列汀 / 脂多糖 / 人牙周膜干细胞 / 成骨分化 / 基质细胞衍生因子-1 / CXC趋化因子受体4
sitagliptin / lipopolysaccharide / human periodontal ligament stem cells / osteogenic differentiation / stromal cell derived factor-1 / CXC chemokine receptor 4
Q257
1 | Li W, Zheng Q, Xu M, et al. Association between circulating 25-hydroxyvitamin D metabolites and periodontitis: results from the NHANES 2009-2012 and Mendelian randomization study[J]. J Clin Periodontol, 2023, 50(2): 252-264. |
2 | Yoshino Y, Miyaji H, Nishida E, et al. Periodontal tissue regeneration by recombinant human collagen peptide granules applied with β-tricalcium phosphate fine particles[J]. J Oral Biosci, 2023, 65(1): 62-71. |
3 | Adachi O, Sugii H, Itoyama T, et al. Decorin promotes osteoblastic differentiation of human periodontal ligament stem cells[J]. Molecules, 2022, 27(23): 8224-8239. |
4 | Guo L, Li L. LIN28A alleviates inflammation, oxidative stress, osteogenic differentiation and mineralization in lipopolysaccharide (LPS)-treated human periodontal ligament stem cells[J]. Exp Ther Med, 2022, 23(6): 411-419. |
5 | Zhang H, Li X, Li J, et al. SDF-1 mediates mesenchymal stem cell recruitment and migration via the SDF-1/CXCR4 axis in bone defect[J]. J Bone Miner Metab, 2021, 39(2): 126-138. |
6 | 李胜鸿, 彭世元, 罗小玲, 等. 柚皮素通过基质细胞衍生因子1/趋化因子受体4信号轴对脂多糖作用下人牙周膜干细胞抗炎、成血管和成骨分化能力的影响[J]. 华西口腔医学杂志, 2023, 41(2): 175-184. |
6 | Li SH, Peng SY, Luo XL, et al. Effect of naringenin on the anti-inflammatory, vascularization, and osteogenesis differentiation of human periodontal ligament stem cells via the stromal cell-derived factor 1/C-X-C motif chemokine receptor 4 signaling axis stimulated by lipopolysaccharide[J]. West China J Stomatol, 2023, 41(2): 175-184. |
7 | Lin FY, Shih CM, Huang CY, et al. Dipeptidyl peptidase-4 inhibitor decreases allograft vasculopathy via regula-ting the functions of endothelial progenitor cells in normoglycemic rats[J]. Cardiovasc Drugs Ther, 2021, 35(6): 1111-1127. |
8 | Yu G, Liu P, Shi Y, et al. Sitagliptin stimulates endothe-lial progenitor cells to induce endothelialization in aneurysm necks through the SDF-1/CXCR4/NRF2 signaling pathway[J]. Front Endocrinol (Lausanne), 2019, 10(1): 823-835. |
9 | Zhang Q, He L, Dong Y, et al. Sitagliptin ameliorates renal tubular injury in diabetic kidney disease via STAT3-dependent mitochondrial homeostasis through SDF-1α/CXCR4 pathway[J]. FASEB J, 2020, 34(6): 7500-7519. |
10 | Moraes RM, Lima GM, Oliveira FE, et al. Exenatide and sitagliptin decrease interleukin 1β, matrix metalloprotei-nase 9, and nitric oxide synthase 2 gene expression but does not reduce alveolar bone loss in rats with periodontitis[J]. J Periodontol, 2015, 86(11): 1287-1295. |
11 | Nie M, Li H, Liu P, et al. HMBOX1 attenuates LPS-induced periodontal ligament stem cell injury by inhibi-ting CXCL10 expression through the NF-κB signaling pathway[J]. Exp Ther Med, 2022, 23(3): 224-233. |
12 | 郭烨, 马庆云, 赵文丽, 等. GAS5靶向miR-222-3p对牙周膜干细胞成骨分化的影响机制[J]. 实用口腔医学杂志, 2021, 37(2): 271-274. |
12 | Guo Y, Ma QY, Zhao WL, et al. The effects of miR-222-3p targeted by GAS5 on osteogenic differentiation of pe-riodontal ligament stem cells[J]. J Pract Stomatol, 2021, 37(2): 271-274. |
13 | 刘萍萍, 唐小莹, 袁小平. 基质细胞趋化因子-1对人牙周膜干细胞趋化因子受体——CXC亚家族受体4表达的影响研究[J]. 口腔医学研究, 2020, 36(1): 51-55. |
13 | Liu PP, Tang XY, Yuan XP. Effect of SDF-1 on CXCR4 expression of human periodontal stem cell chemokine receptor[J]. J Oral Sci Res, 2020, 36(1): 51-55. |
14 | Li X, Wang X, Luan QX. Hyperresponsiveness of human gingival fibroblasts from patients with aggressive periodontitis against bacterial lipopolysaccharide[J]. Exp Ther Med, 2021, 21(5): 417-423. |
15 | Chen W, Su J, Cai S, et al. Cullin3 aggravates the inflammatory response of periodontal ligament stem cells via regulation of SHH signaling and Nrf2[J]. Bioengineered, 2021, 12(1): 3089-3100. |
16 | Chen J, Xu H, Xia K, et al. Resolvin E1 accelerates pulp repair by regulating inflammation and stimulating dentin regeneration in dental pulp stem cells[J]. Stem Cell Res Ther, 2021, 12(1): 75-88. |
17 | Kong L, Deng J, Zhou X, et al. Sitagliptin activates the p62-Keap1-Nrf2 signalling pathway to alleviate oxidati-ve stress and excessive autophagy in severe acute pancreatitis-related acute lung injury[J]. Cell Death Dis, 2021, 12(10): 928-938. |
18 | Zhao X, Huang P, Yuan J. Influence of glimepiride plus sitagliptin on treatment outcome, blood glucose, and oxidative stress in diabetic patients[J]. Am J Transl Res, 2022, 14(10): 7459-7466. |
19 | Zheng XY, Mao CY, Qiao H, et al. Plumbagin suppres-ses chronic periodontitis in rats via down-regulation of TNF-α, IL-1β and IL-6 expression[J]. Acta Pharmacol Sin, 2017, 38(8): 1150-1160. |
20 | 刘相, 康文燕, 商玲玲, 等. 西格列汀通过阻断核因子-κB信号通路抑制脂多糖诱导的人牙龈成纤维细胞炎症反应[J]. 华西口腔医学杂志, 2021, 39(2): 153-163. |
20 | Liu X, Kang WY, Shang LL, et al. Sitagliptin inhibits lipopolysaccharide-induced inflammatory response in human gingival fibroblasts by blocking nuclear factor-κB signaling pathway[J]. West China J Stomatol, 2021, 39(2): 153-163. |
21 | 李颖辉, 齐芳芳, 韩行, 等. 不同浓度钙离子干预人牙周膜干细胞的增殖和成骨分化[J]. 中国组织工程研究, 2023, 27(19): 3005-3010. |
21 | Li YH, Qi FF, Han X, et al. Different concentrations of calcium ions interfere with the proliferation and osteoge-nic differentiation of human periodontal ligament stem cells[J]. Chin J Tissue Eng Res, 2023, 27(19): 3005-3010. |
22 | Zhao A, Chung M, Yang Y, et al. The SDF-1/CXCR4 signaling pathway directs the migration of systemically transplanted bone marrow mesenchymal stem cells towards the lesion site in a rat model of spinal cord injury[J]. Curr Stem Cell Res Ther, 2023, 18(2): 216-230. |
23 | 刘玄林, 熊伟. 槲皮素调节SDF-1/CXCR4轴对下肢动脉硬化闭塞症大鼠的治疗作用[J]. 中国现代应用药学, 2023, 40(4): 455-460. |
23 | Liu XL, Xiong W. Therapeutic effect of quercetin on rats with arteriosclerosis occlusive disease of the lower extremities by regulating SDF-1/CXCR4 axis[J]. Chin J Modern Appl Pharm, 2023, 40(4): 455-460. |
/
〈 |
|
〉 |