血浆无细胞线粒体外线粒体DNA与牙周炎临床指标的相关性研究

杨再目,曹沛,刘振华,栾庆先

PDF(1836 KB)
PDF(1836 KB)
国际口腔医学杂志 ›› 2024, Vol. 51 ›› Issue (3) : 288-295. DOI: 10.7518/gjkq.2024044
论著

血浆无细胞线粒体外线粒体DNA与牙周炎临床指标的相关性研究

  • 杨再目1(),曹沛1,刘振华2,栾庆先1()
作者信息 +

Correlation study of plasma cell-free extra-mitochondrial mitochondria DNA and periodontitis clinical parameters

  • Zaimu Yang1(),Pei Cao1,Zhenhua Liu2,Qingxian Luan1()
Author information +
History +

摘要

目的 血浆无细胞线粒体外线粒体DNA(cf-exmtDNA)具有促炎潜能,本文探讨血浆cf-exmtDNA与牙周炎临床指标的相关性。 方法 纳入18~45岁受试者78人,其中牙周健康者11人,牙龈炎患者11人,牙周炎患者56人。检查并记录基线牙周指标、年龄、性别、体质指数(BMI)和空腹血糖(FBG)。取4 mL抗凝静脉血,采用二次离心法提取其中cf-exmtDNA,使用实时荧光定量聚合酶链式反应检测cf-exmtDNA拷贝数。比较不同牙周炎症状态组血浆cf-exmtDNA水平,并对血浆cf-exmtDNA与平均探诊深度(mPD)、平均附着水平(mCAL)、平均出血指数(mBI)、平均菌斑指数(mPLI)、年龄、FBG、BMI等指标进行相关性分析以及多重线性回归分析。 结果 牙周炎组血浆cf-exmtDNA水平显著高于牙周健康组(P=0.042);样本整体血浆cf-exmtDNA水平与年龄(P=0.023)、mPD(P<0.001)、mCAL(P=0.006)、mBI(P=0.026)呈正相关关系;多重回归分析中,血浆cf-exmtDNA水平主要取决于mPD。 结论 在18~45岁人群中,牙周炎患者血浆cf-exmtDNA水平较牙周健康者显著升高,血浆cf-exmtDNA水平与年龄、mPD、mCAL、mBI呈正相关关系。

Abstract

Objective Plasma cell-free extra-cellular mitochondrial DNA (cf-exmtDNA) shows pro-inflammatory potential. This study aims to investigate the correlation between cf-exmtDNA and baseline periodontitis clinical parameters in patients in general health. Methods A total of 78 participants aged 18-45 years were enrolled: 11 periodontal healthy volunteers, 11 patients with gingivitis, and 56 patients with periodontitis. Baseline periodontal index, age, gender, body mass index (BMI), and baseline fasting blood glucose (FBG) were examined and recorded. Anticoagulated venous blood (4 mL) was collected, and cf-mtDNA was extracted by secondary centrifugation. cf-exmtDNA concentration was measured through real-time quantitative polymerase chain reaction. Different states of periodontal inflammation were compared in terms of plasma cf-exmtDNA copy number, and the relationship among plasma cf-exmtDNA, mean probing depth (mPD), mean clinical attachment level (mCAL), mean bleeding index (mBI), mean plaque index, age, FBG, and BMI were examined through correlation and multiple linear regression analyses. Results Patients with periodontitis had significantly higher plasma cf-exmtDNA levels than the healthy volunteers (P=0.042). The overall plasma cf-exmtDNA was significantly positively correlated with age (P=0.023), mPD (P<0.001), mCAL (P=0.006), and mBI (P=0.026). Multiple regression analysis showed that plasma cf-exmtDNA level was significantly dependent on mPD. Conclusion In the general population aged 18–45, patients with periodontitis had significantly higher plasma cf-exmt-DNA level than the healthy volunteers, and plasma cf-exmtDNA concentration was significantly positively correlated with age, mPD, mCAL, and mBI.

关键词

牙周炎 / 无细胞DNA / 线粒体DNA / 横断面研究 / 牙周临床指标

Key words

periodontitis / cell-free DNA / mitochondrial DNA / cross-sectional study / periodontal clinical parameters

中图分类号

R781.4

引用本文

导出引用
杨再目,曹沛,刘振华,栾庆先. 血浆无细胞线粒体外线粒体DNA与牙周炎临床指标的相关性研究. 国际口腔医学杂志. 2024, 51(3): 288-295 https://doi.org/10.7518/gjkq.2024044
Zaimu Yang,Pei Cao,Zhenhua Liu,Qingxian Luan. Correlation study of plasma cell-free extra-mitochondrial mitochondria DNA and periodontitis clinical parameters[J]. International Journal of Stomatology. 2024, 51(3): 288-295 https://doi.org/10.7518/gjkq.2024044

参考文献

1 Hajishengallis G, Chavakis T, Lambris JD. Current understanding of periodontal disease pathogenesis and targets for host-modulation therapy[J]. Perio-dontol 2000, 2020, 84(1): 14-34.
2 Bae JH, Jo SI, Kim SJ, et al. Circulating cell-free mtDNA contributes to AIM2 inflammasome-mediated chronic inflammation in patients with type 2 diabetes[J]. Cells, 2019, 8(4): 328.
3 Duvvuri B, Lood C. Cell-free DNA as a biomarker in autoimmune rheumatic diseases[J]. Front Immunol, 2019, 10: 502.
4 Aswani A, Manson J, Itagaki K, et al. Scavenging circulating mitochondrial DNA as a potential therapeutic option for multiple organ dysfunction in trauma hemorrhage[J]. Front Immunol, 2018, 9: 891.
5 Zhang Q, Raoof M, Chen Y, et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury[J]. Nature, 2010, 464(7285): 104-107.
6 Nasi M, Bianchini E, de Biasi S, et al. Increased plasma levels of mitochondrial DNA and pro-inflammatory cytokines in patients with progressive multiple sclerosis[J]. J Neuroimmunol, 2020, 338: 577107.
7 Singel KL, Grzankowski KS, ANMNHKhan, et al. Mitochondrial DNA in the tumour microenvironment activates neutrophils and is associated with worse outcomes in patients with advanced epithelial ovarian cancer[J]. Br J Cancer, 2019, 120(2): 207-217.
8 Ward GA, McGraw KL, Abbas-Aghababazadeh F, et al. Oxidized mitochondrial DNA released after inflammasome activation is a disease biomarker for myelodysplastic syndromes[J]. Blood Adv, 2021, 5(8): 2216-2228.
9 Pinti M, Cevenini E, Nasi M, et al. Circulating mitochondrial DNA increases with age and is a familiar trait: Implications for “inflamm-aging”[J]. Eur J Immunol, 2014, 44(5): 1552-1562.
10 Trumpff C, Marsland AL, Basualto-Alarcón C, et al. Acute psychological stress increases serum circulating cell-free mitochondrial DNA[J]. Psychoneuroendocrinology, 2019, 106: 268-276.
11 Trumpff C, Michelson J, Lagranha CJ, et al. Stress and circulating cell-free mitochondrial DNA: a systematic review of human studies, physiological considerations, and technical recommendations[J]. Mitochondrion, 2021, 59: 225-245.
12 Trumpff C, Rausser S, Haahr R, et al. Dynamic behavior of cell-free mitochondrial DNA in human saliva[J]. Psychoneuroendocrinology, 2022, 143: 105852.
13 Al Amir Dache Z, Otandault A, Tanos R, et al. Blood contains circulating cell-free respiratory competent mitochondria[J]. FASEB J, 2020, 34(3): 3616-3630.
14 Roch B, Pisareva E, Sanchez C, et al. Plasma derived cell-free mitochondrial DNA originates mainly from circulating cell-free mitochondria[J]. bio Rxiv, 2021. doi: 10.1101/2021.09.03.458846 .
15 Stephens OR, Grant D, Frimel M, et al. Characteri-zation and origins of cell-free mitochondria in healthy murine and human blood[J]. Mitochondrion, 2020, 54: 102-112.
16 Lázaro-Ibá?ez E, L?sser C, Shelke GV, et al. DNA analysis of low- and high-density fractions defines heterogeneous subpopulations of small extracellular vesicles based on their DNA cargo and topology[J]. J Extracell Vesicles, 2019, 8(1): 1656993.
17 Szilágyi M, P?s O, Márton é, et al. Circulating cell-free nucleic acids: Main characteristics and clinical application[J]. Int J Mol Sci, 2020, 21(18): 6827.
18 Pérez-Trevi?o P, Velásquez M, García N. Mechanisms of mitochondrial DNA escape and its relationship with different metabolic diseases[J]. Biochim Biophys Acta Mol Basis Dis, 2020, 1866(6): 165761.
19 Liu DL, Gao YS, Liu J, et al. Intercellular mitochondrial transfer as a means of tissue revitalization[J]. Signal Transduct Target Ther, 2021, 6(1): 65.
20 Tsilioni I, Theoharides TC. Extracellular vesicles are increased in the serum of children with autism spectrum disorder, contain mitochondrial DNA, and stimulate human microglia to secrete IL-1β[J]. J Neuroinflammation, 2018, 15(1): 239.
21 de Gaetano A, Solodka K, Zanini G, et al. Molecular mechanisms of mtDNA-mediated inflammation[J]. Cells, 2021, 10(11): 2898.
22 Liu J, Wang YF, Shi Q, et al. Mitochondrial DNA efflux maintained in gingival fibroblasts of patients with periodontitis through ROS/mPTP pathway[J]. Oxid Med Cell Longev, 2022, 2022: 1000213.
23 Masi S, Orlandi M, Parkar M, et al. Mitochondrial oxidative stress, endothelial function and metabolic control in patients with type Ⅱ diabetes and perio-dontitis: a randomised controlled clinical trial[J]. Int J Cardiol, 2018, 271: 263-268.
24 Sun XY, Mao YX, Dai PP, et al. Mitochondrial dysfunction is involved in the aggravation of periodontitis by diabetes[J]. J Clin Periodontol, 2017, 44(5): 463-471.
25 Kone?ná B, Gaál Koval?íková A, Pan?íková A, et al. Salivary extracellular DNA and DNase activity in periodontitis[J]. Appl Sci, 2020, 10(21): 7490.
26 吴圣贤, 王成祥. 临床研究样本含量估算基础[M]. 北京: 人民卫生出版社, 2008: 24-26.
26 Wu SX, Wang CX. Sample size calculation basics for clinical research[M]. Beijing: People’s Medical Publishing House, 2008: 24-26.
27 Papapanou PN, Sanz M, Buduneli N, et al. Perio-dontitis: consensus report of workgroup 2 of the 2017 World Workshop on the Classification of Perio-dontal and Peri-Implant Diseases and Conditions[J]. J Periodontol, 2018, 89(): S173-S182.
28 Lang NP, Bartold PM. Periodontal health[J]. J Perio-dontol, 2018, 89(): S9-S16.
29 Hummel EM, Hessas E, Müller S, et al. Cell-free DNA release under psychosocial and physical stress conditions[J]. Transl Psychiatry, 2018, 8(1): 236.
30 Bustin SA, Benes V, Garson JA, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments[J]. Clin Chem, 2009, 55(4): 611-622.
31 Lumley T, Diehr P, Emerson S, et al. The importance of the normality assumption in large public health data sets[J]. Annu Rev Public Health, 2002, 23: 151-169.
32 Brinkmann V. Neutrophil extracellular traps in the second decade[J]. J Innate Immun, 2018, 10(5/6): 414-421.
33 Cata?o Ca?izales YG, Uresti Rivera EE, García Jacobo RE, et al. Increased levels of AIM2 and circulating mitochondrial DNA in type 2 diabetes[J]. Iran J Immunol, 2018, 15(2): 142-155.
34 Silzer T, Barber R, Sun J, et al. Circulating mitochondrial DNA: new indices of type 2 diabetes-related cognitive impairment in Mexican Americans[J]. PLoS One, 2019, 14(3): e0213527.
35 Fatima T, Khurshid Z, Rehman A, et al. Gingival crevicular fluid (GCF): a diagnostic tool for the detection of periodontal health and diseases[J]. Molecules, 2021, 26(5): 1208.

评论

PDF(1836 KB)

Accesses

Citation

Detail

段落导航
相关文章

/