
浅谈正畸临床矫治新技术——球托止动定位轻力5s系统
贺红, 吉利
浅谈正畸临床矫治新技术——球托止动定位轻力5s系统
Discussion of an innovating orthodontic technique: a spherical bracket, lock-hook and light force treatment system
达成精确的转矩表达和稳定的支抗控制是正畸治疗的关键因素,患者在治疗过程中对口腔健康与矫治感受的重视程度日益增长,球面自锁托槽(球托)在一定程度上满足了这两个方面的需求。球面自锁托槽的球面结构可以降低因佩戴矫治器而引起口腔溃疡的概率,并能减少生物膜附着,降低牙龈和牙周疾病的发生概率。与方形托槽相比,球面自锁托槽的脱落率降低了95%。止动定位系统是球面自锁托槽的核心创新点,主要由螺纹系统、螺丝系统和弓丝系统组成。得益于止动定位系统,球面自锁托槽可以去除余隙角,精准表达转矩,使用止锁螺丝时可增强支抗稳定性。止动定位系统搭配了3种特制的细方丝(0.152 4 mm×0.635 0 mm、0.203 2 mm×0.584 2 mm、0.254 0 mm×0.558 8 mm),用轻力排齐的同时可以表达转矩,控制牙根。球托矫治器以黏膜刺激小、脱落率低、转矩表达精准、支抗保有率高、细方丝轻力矫治等特点引起了广泛关注。
Precise torque expression and stable anchorage control are key points in orthodontic treatment. The concern of patients’ quality of life and oral health during orthodontic treatment is increasing. However, most orthodontic instruments cannot achieve the goals mentioned above. A spherical bracket exhibits advantages in these aspects and mitigates these problems to a certain extent. The spherical surface decreases the ulcer rate. Biofilm formation is inhibited, thereby reducing the probability of gum and periodontal disease occurrence. The bonding failure rate of the spherical bracket is lower than that of other self-ligating brackets by 95%. The lock-hook system is the most innovative aspect of the spherical bracket. The system contains thread, screw, and arch wire systems. The lock-hook system benefits torque expression because of its mitigating function. Furthermore, it improves the stability of anchorage when the lock screw is applied. The arch wire system containing three unique wires (0.152 4 mm×0.635 0 mm, 0.203 2 mm×0.584 2 mm, 0.254 0 mm×0.558 8 mm) can be used by orthodontist to control torque with light force during alignment. Therefore, the spherical bracket has gained increasing interest because of its outstanding performance such as comfort, low bonding failure rate, accurate torque expression, stable anchorage, and light force.
球面自锁托槽 / 球托 / 止动定位系统 / 去除余隙 / 控制支抗 / 轻力矫治 / 精准转矩表达
spherical bracket / obrace / lock-hook system / play mitigation / anchorage control / light force treatment / precise torque expression
R783.5
1 | Proffit WR, Fields HW, Larson BE, et al. Contemporary orthodontics[M]. 6th ed. Philadelphia: Elsevier Mosby, 2018: 310-326. |
2 | Pires LPB, de Oliveira AHA, da Silva HF, et al. Can shielded brackets reduce mucosa alteration and increase comfort perception in orthodontic patients in the first 3 days of treatment? A single-blind rando-mized controlled trial[J]. Am J Orthod Dentofacial Orthop, 2015, 148(6): 956-966. |
3 | 吉利, 廖春晖. 球面自锁托槽在正畸患者中的应用及满意度分析[J]. 口腔医学研究, 2020, 36(): 57-60. |
3 | Ji L, Liao CH. The application and satisfaction analy-sis of spherical self-ligating bracket used in orthodon-tic patients[J]. J Oral Sci Res, 2020, 36(): 57-60. |
4 | 郭龙妹, 吉利, 张玲, 等. 球面和方形自锁托槽对牙周指数及龈沟液炎性因子的影响[J]. 医药论坛杂志, 2022, 43(9): 1-6, 10. |
4 | Guo LM, Ji L, Zhang L, et al. Effects of spherical self-ligating bracket and square self-ligating bracket on periodontal indices and inflammatory cytokine levels[J]. J Med Forum, 2022, 43(9): 1-6, 10. |
5 | 吉利, 陈正, 陈彬, 等. 止锁扩弓非拔牙矫治技术治疗重度牙列拥挤1例并文献复习[J]. 精准医学杂志, 2021, 36(4): 295-298. |
5 | Ji L, Chen Z, Chen B, et al. Clinical effect of the non-extraction orthodontic technique of locking and arch expansion in treatment of severe crowding: a case report and literature review[J]. J Precis Med, 2021, 36(4): 295-298. |
6 | Quirynen M, Bollen CM. The influence of surface roughness and surface-free energy on supra- and sub-gingival plaque formation in man. A review of the literature[J]. J Clin Periodontol, 1995, 22(1): 1-14. |
7 | Baricevic M, Mravak-Stipetic M, Majstorovic M, et al. Oral mucosal lesions during orthodontic treatment[J]. Int J Paediatr Dent, 2011, 21(2): 96-102. |
8 | Pereira BR, Tanaka OM, Lima AA, et al. Metal and ceramic bracket effects on human buccal mucosa epi-thelial cells[J]. Angle Orthod, 2009, 79(2): 373-379. |
9 | de Lima Mendon?a S, Praxedes Neto OJ, de Oliveira PT, et al. Comparison of friction produced by two types of orthodontic bracket protectors[J]. Dental Press J Orthod, 2014, 19(1): 86-91. |
10 | 郭龙妹, 吉利, 陈太聪, 等. 球面托槽和传统托槽作用下口腔黏膜的生物力学研究[J]. 医用生物力学, 2023, 38(5): 888-893. |
10 | Guo LM, Ji L, Chen TC, et al. Biomechanical study of oral mucosa under the effect of spherical and conventional brackets[J]. J Med Biomechan, 2023, 38(5): 888-893. |
11 | ?ukowski P, Maciejczyk M, Waszkiel D. Sources of free radicals and oxidative stress in the oral cavity[J]. Arch Oral Biol, 2018, 92: 8-17. |
12 | Andreeva VA, Egnell M, Galan P, et al. Association of the dietary index underpinning the Nutri-score label with oral health: preliminary evidence from a large, population-based sample[J]. Nutrients, 2019, 11(9): 1998. |
13 | Mohammed RE, Abass S, Abubakr NH, et al. Comparing orthodontic bond failures of light-cured composite resin with chemical-cured composite resin: a 12-month clinical trial[J]. Am J Orthod Dentofacial Orthop, 2016, 150(2): 290-294. |
14 | Ward JD, Wolf BJ, Leite LP, et al. Clinical effect of reducing curing times with high-intensity LED lights[J]. Angle Orthod, 2015, 85(6): 1064-1069. |
15 | Dominguez GC, Tortamano A, Lopes LV, et al. A comparative clinical study of the failure rate of ortho-dontic brackets bonded with two adhesive systems: conventional and self-etching primer (SEP)[J]. Dental Press J Orthod, 2013, 18(2): 55-60. |
16 | Hitmi L, Muller C, Mujajic M, et al. An 18-month clinical study of bond failures with resin-modified glass ionomer cement in orthodontic practice[J]. Am J Orthod Dentofacial Orthop, 2001, 120(4): 406-415. |
17 | Bazargani F, Magnuson A, L?thgren H, et al. Ortho-dontic bonding with and without primer: a randomi-zed controlled trial[J]. Eur J Orthod, 2016, 38(5): 503-507. |
18 | Krishnan S, Pandian S, Rajagopal R. Six-month bracket failure rate with a flowable composite: a split-mouth randomized controlled trial[J]. Dental Press J Orthod, 2017, 22(2): 69-76. |
19 | Skidmore KJ, Brook KJ, Thomson WM, et al. Factors influencing treatment time in orthodontic patients[J]. Am J Orthod Dentofacial Orthop, 2006, 129(2): 230-238. |
20 | Ji L, Chen Z, Liao CH, et al. Effects of customized resin base on bonding strength of spherical self- ligating brackets[J]. J Orofac Orthop, 2022, 83(2): 108-116. |
21 | Elsaka SE, Hammad SM, Ibrahim NF. Evaluation of stresses developed in different bracket-cement-ena-mel systems using finite element analysis with in vitro bond strength tests[J]. Prog Orthod, 2014, 15(1): 33. |
22 | Shyagali TR, Bhayya DP, Urs CB, et al. Finite element study on modification of bracket base and its effects on bond strength[J]. Dental Press J Orthod, 2015, 20(2): 76-82. |
23 | Hardalupas Y, Taylor AMKP, Wilkins JH. Experimental investigation of sub-millimetre droplet impingement on to spherical surfaces[J]. Int J Heat Fluid Flow, 1999, 20(5): 477-485. |
24 | 辜岷, 白丁, 梁芮, 等. 正畸方丝转矩余隙角的研究[J]. 临床口腔医学杂志, 2004, 20(3): 171-173. |
24 | Gu M, Bai D, Liang R, et al. Study on torsional play angle of orthdontic rectangular arch wires[J]. J Clin Stomatol, 2004, 20(3): 171-173. |
25 | 姜春苗, 安舒, 王军. 正畸治疗过程中影响转矩的因素[J]. 国际口腔医学杂志, 2011, 38(1): 115-118. |
25 | Jiang CM, An S, Wang J. Review on the factors affecting torque expression in orthodontic treatment[J]. Int J Stomatol, 2011, 38(1): 115-118. |
26 | Reitan K. Some factors determining the evaluation of forces in orthodontics[J]. Am J Orthod, 1957, 43(1): 32-45. |
27 | Hemanth M, Deoli S, Raghuveer HP, et al. Stress induced in the periodontal ligament under orthodontic loading (part Ⅰ): a finite element method study u-sing linear analysis[J]. J Int Oral Health, 2015, 7(8): 129-133. |
28 | Hemanth M, Deoli S, Raghuveer HP, et al. Stress induced in periodontal ligament under orthodontic loading (part Ⅱ): a comparison of linear versus non-linear fem study[J]. J Int Oral Health, 2015, 7(9): 114-118. |
29 | von B?hl M, Kuijpers-Jagtman AM. Hyalinization during orthodontic tooth movement: a systematic review on tissue reactions[J]. Eur J Orthod, 2009, 31(1): 30-36. |
30 | Tomizuka R, Shimizu Y, Kanetaka H, et al. Histological evaluation of the effects of initially light and gradually increasing force on orthodontic tooth movement[J]. Angle Orthod, 2007, 77(3): 410-416. |
31 | Agarwal A, Mahajan S, Verma S, et al. Evaluation of the stress induced in tooth, periodontal ligament & alveolar bone with varying degrees of bone loss during various types of orthodontic tooth movements[J]. J Clin Diagn Res, 2016, 10(2): ZC46-ZC52. |
32 | Sifakakis I, Pandis N, Makou M, et al. Torque expression of 0.018 and 0.022 inch conventional brackets[J]. Eur J Orthod, 2013, 35(5): 610-614. |
33 | Kumar AA, Sekar S, Kumar SS, et al. Computation and collation of torque expression in 0.018 inch and 0.022 inch preadjusted bracket slots on passive insertion of full-size archwire: a finite element study[J]. J Pharm Bioallied Sci, 2022, 14(): S143-S147. |
34 | Pai VS, Pai SS, Krishna S, et al. Evaluation of slot size in orthodontic brackets: are standards as expec-ted[J]. J Indian Orthod Soc, 2011, 45(4): 169-174. |
35 | Detterline DA, Isikbay SC, Brizendine EJ, et al. Clinical outcomes of 0.018-inch and 0.022-inch bracket slot using the ABO objective grading system[J]. Angle Orthod, 2010, 80(3): 528-532. |
/
〈 |
|
〉 |