
线粒体自噬在牙周炎发生发展过程中的研究进展
古丽其合热·阿布来提,秦旭,朱光勋
线粒体自噬在牙周炎发生发展过程中的研究进展
Research progress of mitophagy in the onset and development of periodontal disease
牙周炎是一种由菌斑生物膜引起牙周支持组织破坏的慢性炎症性疾病,主要以牙龈炎症和牙槽骨进行性破坏为特征。线粒体自噬是通过自噬选择性清除细胞内功能失调或受损的线粒体来调节细胞内稳态的主要机制,在线粒体质量和数量控制中发挥关键作用。近年来有研究发现:线粒体自噬可以通过抑制牙周炎症反应、降低细胞凋亡、促进牙周韧带干细胞成骨分化等多种途径参与牙周病的发生和发展,为牙周病的治疗提供了有前景的治疗靶点。本文就线粒体自噬的分子机制及其在牙周病发生发展中的作用等方面的研究进展作一综述。
Periodontal disease is a chronic inflammatory disease leading to the destruction of periodontal tissues caused by dental plaque biofilm. It ischaracterized by gingival inflammation and progressive destruction of alveolar bone. Mitophagy is a major mechanism that regulates cellular homeostasis by selectively eliminating dysfunctional or damaged mitochondria through autophagy, which plays a critical role in the mitochondrial quality and quantity control. Recent studies indicated that mitophagy participates in the development of periodontal diseases by inhibiting periodontal inflammation, decreasing cell apoptosis, and promoting osteogenic differentiation in periodontal ligament stem cells. Moreover, it provides a promising therapeutic strategy for the treatment of periodontal disease. Therefore, this review summarizes the progress of research on the definition of mitophagy, its molecular mechanism, and the role of mitophagy in the onset and development of periodontal disease.
牙周病 / 线粒体自噬 / 炎症 / 细胞凋亡 / 成骨分化
periodontal disease / mitophagy / inflammation / cell apoptosis / osteogenic differentiation
R781.4
1 | Lemasters JJ. Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging[J]. Rejuvenation Res, 2005, 8(1): 3-5. |
2 | Yao RQ, Ren C, Xia ZF, et al. Organelle-specific autophagy in inflammatory diseases: a potential therapeutic target underlying the quality control of multiple organelles[J]. Autophagy, 2021, 17(2): 385-401. |
3 | Onishi M, Yamano K, Sato M, et al. Molecular mechanisms and physiological functions of mitophagy[J]. EMBO J, 2021, 40(3): e104705. |
4 | Gustafsson ?B, Dorn GW 2nd. Evolving and expanding the roles of mitophagy as a homeostatic and pathogenic process[J]. Physiol Rev, 2019, 99(1): 853-892. |
5 | Liu L, Liao XD, Wu H, et al. Mitophagy and its contribution to metabolic and aging-associated disorders[J]. Antioxid Redox Signal, 2020, 32(12): 906-927. |
6 | Zhu CL, Yao RQ, Li LX, et al. Mechanism of mitophagy and its role in sepsis induced organ dysfunction: a review[J]. Front Cell Dev Biol, 2021, 9: 664896. |
7 | Liu BQ, Zhang J, Liu GJ, et al. Expression of PINK1 and Parkin in human apical periodontitis[J]. Int Endod J, 2022, 55(8): 870-881. |
8 | Yang CN, Kok SH, Wang HW, et al. Simvastatin alleviates bone resorption in apical periodontitis possibly by inhibition of mitophagy-related osteoblast apoptosis[J]. Int Endod J, 2019, 52(5): 676-688. |
9 | Kinane DF, Stathopoulou PG, Papapanou PN. Perio-dontal diseases[J]. Nat Rev Dis Primers, 2017, 3: 17038. |
10 | Yoo SM, Jung YK. A molecular approach to mito-phagy and mitochondrial dynamics[J]. Mol Cells, 2018, 41(1): 18-26. |
11 | Pickles S, Vigié P, Youle RJ. Mitophagy and quality control mechanisms in Mitochondrial maintenance[J]. Curr Biol, 2018, 28(4): R170-R185. |
12 | Jin SM, Lazarou M, Wang CX, et al. Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL[J]. J Cell Biol, 2010, 191(5): 933-942. |
13 | Koyano F, Okatsu K, Kosako H, et al. Ubiquitin is phosphorylated by PINK1 to activate parkin[J]. Nature, 2014, 510(7503): 162-166. |
14 | Randow F, Youle RJ. Self and nonself: how auto-phagy targets mitochondria and bacteria[J]. Cell Host Microbe, 2014, 15(4): 403-411. |
15 | Lazarou M, Sliter DA, Kane LA, et al. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy[J]. Nature, 2015, 524(7565): 309-314. |
16 | Tere?ak P, Lapao A, Subic N, et al. Regulation of PRKN-independent mitophagy[J]. Autophagy, 2022, 18(1): 24-39. |
17 | Kuang Y, Ma KL, Zhou CQ, et al. Structural basis for the phosphorylation of FUNDC1 LIR as a molecular switch of mitophagy[J]. Autophagy, 2016, 12(12): 2363-2373. |
18 | Chen G, Han Z, Feng D, et al. A regulatory signa-ling loop comprising the PGAM5 phosphatase and CK2 controls receptor-mediated mitophagy[J]. Mol Cell, 2014, 54(3): 362-377. |
19 | Ni HM, Williams JA, Ding WX. Mitochondrial dynamics and mitochondrial quality control[J]. Redox Biol, 2015, 4: 6-13. |
20 | Ashrafi G, Schwarz TL. The pathways of mitophagy for quality control and clearance of mitochondria[J]. Cell Death Differ, 2013, 20(1): 31-42. |
21 | Otsu K, Murakawa T, Yamaguchi O. BCL2L13 is a mammalian homolog of the yeast mitophagy receptor Atg32[J]. Autophagy, 2015, 11(10): 1932-1933. |
22 | Shirane-Kitsuji M, Nakayama KI. Mitochondria: FKBP38 and mitochondrial degradation[J]. Int J Biochem Cell Biol, 2014, 51: 19-22. |
23 | Curtis MA, Diaz PI, Van Dyke TE. The role of the microbiota in periodontal disease[J]. Periodontol 2000, 2020, 83(1): 14-25. |
24 | Jiang K, Li JW, Jiang LS, et al. PINK1-mediated mitophagy reduced inflammatory responses to Porphyromonas gingivalis in macrophages[J]. Oral Dis, 2022. doi:10.1111/odi.14286 . |
25 | Li XC, Zhao Y, Peng HR, et al. Robust intervention for oxidative stress-induced injury in periodontitis via controllably released nanoparticles that regulate the ROS-PINK1-Parkin pathway[J]. Front Bioeng Biotechnol, 2022, 10: 1081977. |
26 | Zhai QM, Chen X, Fei DD, et al. Nanorepairers rescue inflammation-induced mitochondrial dysfunction in mesenchymal stem cells[J]. Adv Sci (Weinh), 2022, 9(4): e2103839. |
27 | Schofield JH, Schafer ZT. Mitochondrial reactive oxygen species and mitophagy: a complex and nuan-ced relationship[J]. Antioxid Redox Signal, 2021, 34(7): 517-530. |
28 | 刘瑜, 李树锦, 张森林, 等. 牙龈卟啉单胞菌脂多糖促进牙龈成纤维细胞的自噬[J]. 细胞与分子免疫学杂志, 2017, 33(3): 315-319. |
28 | Liu Y, Li SJ, Zhang SL, et al. Lipopolysaccharide of Porphyromonas gingivalis promotes the autophagy of human gingival fibroblasts[J]. Chin J Cell Mol Immunol, 2017, 33(3): 315-319. |
29 | 范智博, 金珂, 李胜鸿, 等. 饥饿条件下活性氧通过PINK1/Parkin通路调控人牙周膜细胞的线粒体自噬[J]. 华西口腔医学杂志, 2022, 40(6): 645-653. |
29 | Fan ZB, Jin K, Li SH, et al. Regulation of reactive oxygen species on the mitophagy of human perio-dontal ligament cells through the PINK1/Parkin pathway under starvation[J]. West China J Stomatol, 2022, 40(6): 645-653. |
30 | Hasturk H. Inflammation and periodontal regeneration[J]. Dent Clin North Am, 2022, 66(1): 39-51. |
31 | Fei DD, Xia YM, Zhai QM, et al. Exosomes regulate interclonal communication on osteogenic differen-tiation among heterogeneous osteogenic single-cell clones through PINK1/parkin-mediated mitophagy[J]. Front Cell Dev Biol, 2021, 9: 687258. |
32 | Lin L, Li S, Hu S, et al. UCHL1 impairs periodontal ligament stem cell osteogenesis in periodontitis[J]. J Dent Res, 2023, 102(1): 61-71. |
33 | Vakifahmetoglu-Norberg H, Ouchida AT, Norberg E. The role of mitochondria in metabolism and cell death[J]. Biochem Biophys Res Commun, 2017, 482(3): 426-431. |
34 | Tunal? M, Atao?lu T, Celik I. Apoptosis: an under-lying factor for accelerated periodontal disease associated with diabetes in rats[J]. Clin Oral Investig, 2014, 18(7): 1825-1833. |
35 | Zhu CH, Zhao Y, Pei DD, et al. PINK1 mediated mitophagy attenuates early apoptosis of gingival epithelial cells induced by high glucose[J]. BMC Oral Health, 2022, 22(1): 144. |
36 | Wang H, Jiang TY, Li W, et al. Resveratrol attenua-tes oxidative damage through activating mitophagy in an in vitro model of Alzheimer’s disease[J]. Toxicol Lett, 2018, 282: 100-108. |
37 | Liu XH, Lu JD, Liu SQ, et al. Huangqi-Danshen decoction alleviates diabetic nephropathy in DB/DB mice by inhibiting PINK1/Parkin-mediated mitophagy[J]. Am J Transl Res, 2020, 12(3): 989-998. |
38 | Abudureyimu M, Yu WJ, Cao RY, et al. Berberine promotes cardiac function by upregulating PINK1/parkin-mediated mitophagy in heart failure[J]. Front Physiol, 2020, 11: 565751. |
/
〈 |
|
〉 |