
铁死亡在口腔疾病中的研究进展
傅豫, 何薇, 黄兰
铁死亡在口腔疾病中的研究进展
Ferroptosis and its implication in oral diseases
铁死亡是一种可调控的,具有铁依赖性的,由脂质过氧化驱动的细胞死亡形式,是一种重要的细胞死亡形式,在多种疾病中发挥着重要作用。目前铁死亡在癌症、缺血/再灌注损伤疾病、各类神经退行性疾病等方面的研究取得了一定的成果,在口腔疾病中的作用也越来越受关注。铁死亡是口腔癌的新兴治疗靶点。许多炎症损伤疾病与铁死亡相关,牙周炎作为一种慢性炎症性疾病,与铁死亡的发生过程可能存在一定的相关性。本文就目前铁死亡与口腔疾病的相关研究及发现进行综述,旨在为探索口腔疾病的发病机制和诊疗提供参考。
Ferroptosis is a regulated, iron-dependent form of cell death driven by lipid peroxidation and plays an important role in a variety of diseases. It has been studied in cancer, ischemia/reperfusion injury diseases, and neurodegenerative diseases. As an important form of cell death, ferroptosis has received increasing attention in oral disease research. Some advances have been achieved in related studies. Ferroptosis has become an emerging therapeutic target for oral cancer and has been associated with many inflammatory injury diseases. As a chronic inflammatory disease, periodontitis may have some correlation with ferroptosis. This work reviews current findings on ferroptosis to provide a reference for the mechanism, diagnosis, and treatment of related oral diseases.
ferroptosis / oral disease / oral cancer / periodontitis / cancer therapy
R782.4
1 | Gao MH, Monian P, Pan QH, et al. Ferroptosis is an autophagic cell death process[J]. Cell Res, 2016, 26(9): 1021-1032. |
2 | Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5): 1060-1072. |
3 | Yan HF, Zou T, Tuo QZ, et al. Ferroptosis: mechanisms and links with diseases[J]. Signal Transduct Target Ther, 2021, 6(1): 49. |
4 | Balachander K, Paramasivam A. Ferroptosis: an emerging therapeutic target for oral cancer[J]. Oral Oncol, 2022, 131: 105970. |
5 | Stockwell BR. Ferroptosis turns 10: emerging me-chanisms, physiological functions, and therapeutic applications[J]. Cell, 2022, 185(14): 2401-2421. |
6 | Tang DL, Chen X, Kang R, et al. Ferroptosis: molecular mechanisms and health implications[J]. Cell Res, 2021, 31(2): 107-125. |
7 | Magtanong L, Ko PJ, To M, et al. Exogenous monounsaturated fatty acids promote a ferroptosis-resistant cell state[J]. Cell Chem Biol, 2019, 26(3): 420-432.e9. |
8 | Zilka O, Shah R, Li B, et al. On the mechanism of cytoprotection by ferrostatin-1 and liproxstatin-1 and the role of lipid peroxidation in ferroptotic cell death[J]. ACS Cent Sci, 2017, 3(3): 232-243. |
9 | Guo C, Wang T, Zheng W, et al. Intranasal defero-xamine reverses iron-induced memory deficits and inhibits amyloidogenic APP processing in a transgenic mouse model of Alzheimer’s disease[J]. Neurobiol Aging, 2013, 34(2): 562-575. |
10 | Chen KX, Ma SY, Deng JW, et al. Ferroptosis: a new development trend in periodontitis[J]. Cells, 2022, 11(21): 3349. |
11 | Kwon HK, Kim JM, Shin SC, et al. The mechanism of submandibular gland dysfunction after menopause may be associated with the ferroptosis[J]. A-ging (Albany NY), 2020, 12(21): 21376-21390. |
12 | 谢章弘, 华清泉. 铁死亡在头颈部鳞状细胞癌中的研究进展[J]. 肿瘤防治研究, 2022, 49(4): 282-287. |
12 | Xie ZH, Hua QQ. Research progress of ferroptosis in head and neck squamous cell carcinoma[J]. Cancer Res Prev Treat, 2022, 49(4): 282-287. |
13 | Han L, Li L, Wu G. Induction of ferroptosis by carnosic acid-mediated inactivation of Nrf2/HO-1 potentiates cisplatin responsiveness in OSCC cells[J]. Mol Cell Probes, 2022, 64: 101821. |
14 | Wang XH, Liu K, Gong HM, et al. Death by histone deacetylase inhibitor quisinostat in tongue squamous cell carcinoma via apoptosis, pyroptosis, and ferroptosis[J]. Toxicol Appl Pharmacol, 2021, 410: 115363. |
15 | Ya-Hsuan L, Valeria C, Chun-Yen H, et al. Promotion of ferroptosis in oral cancer cell lines by chrysophanol[J]. Curr Top Nutraceutical Res, 2020, 18(3): 273-276. |
16 | Sato K, Shi L, Ito F, et al. Non-thermal plasma specifically kills oral squamous cell carcinoma cells in a catalytic Fe( Ⅱ )-dependent manner[J]. J Clin Biochem Nutr, 2019, 65(1): 8-15. |
17 | Zhu T, Shi LL, Yu CY, et al. Ferroptosis promotes photodynamic therapy: supramolecular photosensitizer-inducer nanodrug for enhanced cancer treatment[J]. Theranostics, 2019, 9(11): 3293-3307. |
18 | Hsieh PL, Chao SC, Chu PM, et al. Regulation of ferroptosis by non-coding RNAs in head and neck cancers[J]. Int J Mol Sci, 2022, 23(6): 3142. |
19 | Yang J, Cao XH, Luan KF, et al. Circular RNA FNDC3B protects oral squamous cell carcinoma cells from ferroptosis and contributes to the malignant progression by regulating miR-520d-5p/SLC7A-11 axis[J]. Front Oncol, 2021, 11: 672724. |
20 | Yu Y, MohamedAl-Sharani H, Zhang B. EZH2-mediated SLC7A11 upregulation via miR-125b-5p represses ferroptosis of TSCC[J]. Oral Dis, 2023, 29(3): 880-891. |
21 | Sun K, Ren WH, Li SM, et al. MiR-34c-3p upregulates erastin-induced ferroptosis to inhibit proliferation in oral squamous cell carcinomas by targeting SLC7A11[J]. Pathol Res Pract, 2022, 231: 153778. |
22 | Yang YX, Tang H, Zheng JW, et al. The PER1/HIF-1alpha negative feedback loop promotes ferroptosis and inhibits tumor progression in oral squamous cell carcinoma[J]. Transl Oncol, 2022, 18: 101360. |
23 | Li MY, Jin SF, Zhang ZY, et al. Interleukin-6 facilitates tumor progression by inducing ferroptosis resistance in head and neck squamous cell carcinoma[J]. Cancer Lett, 2022, 527: 28-40. |
24 | Zhou QW, Wang XQ, Zhang YX, et al. Inhibition of AEBP1 predisposes cisplatin-resistant oral cancer cells to ferroptosis[J]. BMC Oral Health, 2022, 22(1): 478. |
25 | 晏子钦, 魏明波, 程波. 基于铁死亡相关基因的口腔鳞状细胞癌的生物信息学分析[J]. 临床口腔医学杂志, 2022, 38(1): 19-22. |
25 | Yan ZQ, Wei MB, Cheng B. Bioinformatics analysis of oral squamous cell carcinoma based on the expression of ferroptosis-related genes[J]. J Clin Stomatol, 2022, 38(1): 19-22. |
26 | 吴莹莹, 孙越, 邹燕梅, 等. 筛选影响口腔鳞状细胞癌预后的铁死亡相关lncRNAs并构建预后风险模型[J]. 临床口腔医学杂志, 2021, 37(9): 535-538. |
26 | Wu YY, Sun Y, Zou YM, et al. Screening ferroptosis-related lncRNAs that affect the prognosis of oral squamous cell carcinoma and constructing a prognostic risk model[J]. J Clin Stomatol, 2021, 37(9): 535-538. |
27 | Huang C, Zhan L. Network pharmacology identifies therapeutic targets and the mechanisms of glutat-hione action in ferroptosis occurring in oral cancer[J]. Front Pharmacol, 2022, 13: 851540. |
28 | Gu WC, Kim M, Wang L, et al. Multi-omics analys-is of ferroptosis regulation patterns and characterization of tumor microenvironment in patients with oral squamous cell carcinoma[J]. Int J Biol Sci, 2021, 17(13): 3476-3492. |
29 | Tonetti MS, Greenwell H, Kornman KS. Staging and grading of periodontitis: framework and propo-sal of a new classification and case definition[J]. J Clin Periodontol, 2018, 45(): S149-S161. |
30 | Yao C, Lan DM, Li X, et al. Porphyromonas gingivalis is a risk factor for the development of nonalcoholic fatty liver disease via ferroptosis[J]. Microbes Infect, 2023, 25(1/2): 105040. |
31 | Liu SX, Butler CA, Ayton S, et al. Porphyromonas gingivalis and the pathogenesis of Alzheimer’s di-sease[J]. Crit Rev Microbiol, 2023: 1-11. |
32 | Qiao SW, Li BS, Cai Q, et al. Involvement of ferroptosis in Porphyromonas gingivalis lipopolysaccharide-stimulated periodontitis in vitro and in vivo [J]. Oral Dis, 2023, 29(8): 3571-3582. |
33 | Bullon P, Cordero MD, Quiles JL, et al. Mitochondrial dysfunction promoted by Porphyromonas gingivalis lipopolysaccharide as a possible link between cardiovascular disease and periodontitis[J]. Free Radic Biol Med, 2011, 50(10): 1336-1343. |
34 | Yang WY, Meng X, Wang YR, et al. PRDX6 alle-viates lipopolysaccharide-induced inflammation and ferroptosis in periodontitis[J]. Acta Odontol Scand, 2022, 80(7): 535-546. |
35 | Wang HW, Qiao XT, Zhang C, et al. Long non-coding RNA LINC00616 promotes ferroptosis of periodontal ligament stem cells via the microRNA-370/transferrin receptor axis[J]. Bioengineered, 2022, 13(5): 13070-13081. |
36 | Lu R, Meng H, Gao X, et al. Effect of non-surgical periodontal treatment on short chain fatty acid le-vels in gingival crevicular fluid of patients with ge-neralized aggressive periodontitis[J]. J Periodontal Res, 2014, 49(5): 574-583. |
37 | Zhao YH, Li J, Guo W, et al. Periodontitis-level butyrate-induced ferroptosis in periodontal ligament fibroblasts by activation of ferritinophagy[J]. Cell Death Discov, 2020, 6(1): 119. |
38 | Zhang CR, Xue PX, Ke JG, et al. Development of ferroptosis-associated ceRNA network in periodontitis[J]. Int Dent J, 2023, 73(2): 186-194. |
39 | Pan SY, Hu B, Sun JC, et al. Identification of cross-talk pathways and ferroptosis-related genes in pe-riodontitis and type 2 diabetes mellitus by bioinformatics analysis and experimental validation[J]. Front Immunol, 2022, 13: 1015491. |
40 | Leite-Lima F, Bastos VC, Vitório JG, et al. Unvei-ling metabolic changes in marsupialized odontoge-nic keratocyst: a pilot study[J]. Oral Dis, 2022, 28(8): 2219-2229. |
41 | Zhou H, Zhou YL, Mao JA, et al. NCOA4-mediated ferritinophagy is involved in ionizing radiation-induced ferroptosis of intestinal epithelial cells[J]. Redox Biol, 2022, 55: 102413. |
/
〈 |
|
〉 |