Carboniferous sequence stratigraphy and sedimentary evolution in the North Troyes Oilfield,eastern margin of the Pre-Caspian Basin

Yefei CHEN, Lun ZHAO, Yu HOU, Yi LI, Shuqin WANG, Jianxin LI

PDF(9767 KB)
PDF(9767 KB)
J Palaeogeogr ›› 2024, Vol. 26 ›› Issue (1) : 58-74. DOI: 10.7605/gdlxb.2024.01.008
OVERSEAS PETROLEUM GEOLOGY

Carboniferous sequence stratigraphy and sedimentary evolution in the North Troyes Oilfield,eastern margin of the Pre-Caspian Basin

Author information +
History +

Abstract

Based on 3D seismic and borehold data,seven seismic sequence boundaries and seven drilling sequence boundaries are identified in the Carboniferous carbonate platform of North Troyes Oilfield. The KT-I reservoir group is divided into three and a half third-order sequences,and the KT-Ⅱ reservoir group is divided into three third-order sequences. The sedimentary environment evolved stratigraphically from open platform,through restricted platform,to evaporative platform. According to the palaeo-geomorphic restoration and sedimentary evolution within the sequence framework of the study area,the palaeogeomorphic and sedimentary evolution of the study area can be divided into three stages: the initial phase of differential platform uplift and depression(SQ2-SQ3 sequence),the finalizing phase of differential uplift and sedimentary differentiation fixing period(SQ4 sequence),and the inherited development phase(SQ5-SQ7 sequence). Further analysis shows that the uplift and depression pattern under the control of sequence framework controls the plan-view distribution of dolomite subclasses. The lower part of the sequences are dominated by micritic dolomite-gypsum and micritic dolomite-micritic limestone assemblages,which are characteristic of mainly lagoonal lacustrine deposits,while the higher part of the sequences are dominated by micritic dolomites,fine micritic dolomites and residual micritic dolomites.The results show that deposition of the KT-I oil formation in the study area results from inherited differential subsidence,rather than erosion and subsidence of the “western highland and eastern lowland”as previously thought. The overall palaeogeographical pattern is characterized by “Platform in the east,trough in the west,high in the north and low in the south”,which consistently controls the development and distribution of favorable facies and high-quality reservoirs. This finding is vitally important in screening for hydrocarbon exploration and production prospects in Pre-Caspian Basin.

Key words

sequence stratigraphy / palaeogeomorphological and sedimentary evolution / differentiatial uplift and depression / carbonate platform / Carboniferous / North Troyes Oilfield / Pre-Caspian Basin

Cite this article

Download Citations
Yefei CHEN , Lun ZHAO , Yu HOU , et al . Carboniferous sequence stratigraphy and sedimentary evolution in the North Troyes Oilfield,eastern margin of the Pre-Caspian Basin. Journal of Palaeogeography. 2024, 26(1): 58-74 https://doi.org/10.7605/gdlxb.2024.01.008

References

[1]
陈荣林,叶德燎,徐文明. 2006. 滨里海盆地与塔里木盆地油气地质特征的类比. 中国西部油气地质, 2(3): 261-271.
[Chen R L,Ye D L,Xu W M.2006. Comparison of geological characteristics between the Caspian Basin and the Tarim Basin. West China Petroleum Geosciences, 2(3): 261-271]
[2]
胡杨. 2014. 滨里海盆地东部盐构造及其对油气成藏的控制作用. 内蒙古石油化工,(12): 1-3.
[Hu Y.2014. Controlling of salt-related tectonics on petroleum accumulation in eastern Pre-Caspian Basin. Inner Mongolia Petrochemical Industry,(12): 1-3]
[3]
胡源,陈开远,李玉海,刘双双,郭晓琛. 2013. 滨里海盆地碳酸盐岩高频层序特征及其油气勘探应用: 以M 区块石炭系 KT-Ⅰ 含油层系为例. 沉积学报, 31(4): 608-615.
[Hu Y,Chen K Y,Li Y H,Liu S S,Guo X C.2013. Features and petroleum exploration significance of high-frequency sequence in Pre-Caspian Basin: a case from Carboniferous KT-Ⅰ Member in M Block. Acta Sedimentological Sinica, 31(4): 608-615]
[4]
姜在兴. 2012. 层序地层学研究进展: 国际层序地层学研讨会综述. 地学前缘, 19(1): 1-9.
[Jiang Z X.2012. Advances in sequence stratigraphy: a summary from international workshop on Sequence Stratigraphy. Earth Science Frontiers, 19(1): 1-9]
[5]
李峰峰,郭睿,余义常. 2019. 层序地层划分方法进展及展望. 地质科技通报, 38(4): 215-224.
[Li F F,Guo R,Yu Y C.2019. Progress and prospect of the division of sequence stratigraphy. Geological Science and Technology Information, 38(4): 215-224]
[6]
李永宏,Burlin Y K.2005. 滨里海盆地南部盐下大型油气田石油地质特征及形成条件. 石油与天然气地质, 26(6): 840-846.
[Li Y H,Burlin Y K.2005. Characteristics of petroleum geology and formation conditions of large oil and gas fields below halite in southern Pre-Caspian Basin. Oil & Gas Geology, 26(6): 840-846]
[7]
梁爽,吴亚东,王燕琨,王震,盛善波. 2020. 滨里海盆地东缘盐下油气成藏特征与主控因素. 中国石油勘探, 25(4): 125-132.
[Liang S,Wu Y D,Wang Y K,Wang Z,Sheng S B.2020. Characteristics and main controlling factors of sub-salt oil and gas accumulation in the eastern margin of the Precaspian Basin. China Petroleum Exploration, 25(4): 125-132]
[8]
刘洛夫,朱毅秀. 2002. 滨里海盆地盐下层系的油气地质特征. 西南石油学院学报, 24(3): 11-15.
[Liu L F,Zhu Y X.2002. Petroleum geology of pre-salt sediments in the Pre-Caspian Basin. Journal of Southwest Petroleum Institute, 24(3): 11-15]
[9]
卢家希,谭秀成,金值民,陈烨菲,王淑琴,赵文琪,李长海. 2023. 碳酸盐岩早期差异成储路径及其对储集性能的影响: 以滨里海盆地N油田石炭系KT-Ⅰ与KT-Ⅱ层系为例. 古地理学报,25(1).226-224.
[Lu J X,Tan X C,Jin Z M,Chen Y F,Wang S Q,Zhao W Q,Li C H.2023. Differential reservoir formation paths and their control on reservoir properties of carbonate rocks in early stage: a case study of KT-Ⅰ and KT-Ⅱ in N oilfield,pre-Caspian Basin. Journal of Palaeogeography(Chinese Edition),25(1):226-244]
[10]
苗钱友,王燕琨,朱筱敏,于炳松,蒋俊超. 2013. 滨里海盆地东缘石炭系层序地层研究. 新疆石油地质, 34(4): 483-487.
[Miao Q Y,Wang Y K,Zhu X M,Yu B S,Jiang J C.2013. Sequence stratigraphy of Carboniferous in eastern margin of Pre-Caspian Basin. Xinjiang Petroleum Geology, 34(4): 483-487]
[11]
钱桂华. 2005. 哈萨克斯坦滨里海盆地油气地质特征及勘探方向. 中国石油勘探, 10(5): 60-67.
[Qian G H.2005. Oil-Gas geological features and its exploration direction in marginal Caspian Basin,Kazakhstan. China Petroleum Exploration, 10(5): 60-67]
[12]
王向东,胡科毅,郄文昆,盛青怡,陈波,林巍,要乐,王秋来,祁玉平,陈吉涛,廖卓庭,宋俊俊. 2019. 中国石炭纪综合地层和时间框架. 中国科学: 地球科学, 49(1): 139-159.
[Wang X D,Hu K Y,Qie W K,Sheng Q Y,Chen B,Lin W,Yao L,Wang Q L,Qi Y P,Chen J T,Liao Z T,Song J J.2019. Carboniferous integrative stratigraphy and timescale of China. Science China Earth Sciences, 49(1): 139-159]
[13]
王媛,林畅松,李浩,孙彦达,何海全,王清龙,张曼莉,姬牧野. 2017. 哈萨克斯坦 Marsel 探区下石炭统高频层序地层特征与沉积演化. 古地理学报, 19(5): 819-834.
[Wang Y,Lin C S,Li H,Sun Y D,He H Q,Wang Q L,Zhang M L,Ji M Y.2017. Characteristics of high-frequency sequence and sedimentary evolution of the Lower Carboniferous in Marsel block,Kazakhstan. Journal of Palaeogeography(Chinese Edition), 19(5): 819-834]
[14]
吴峰,郭来源,张道军,解习农,尤丽,杜学斌,何云龙,商志垒,许马光. 2016. 基于高精度岩心扫描元素数据的高频层序划分: 以西科1井第四系生物礁滩体系为例. 地质科技情报, 35(5): 42-51.
[Wu F,Guo L Y,Zhang D J,Xie X N,You L,Du X B,He Y L,Shang Z L,Xu M G.2016. High resolution sequence units division based on geochemical data: taking Quaternary reef-bank strata of Well XKI as an Example. Geological Science and Technology Information, 35(5): 42-51]
[15]
杨孝群,汤良杰,朱勇. 2011. 滨里海盆地东缘盐构造特征及其与乌拉尔造山运动关系. 高校地质学报, 17(2): 318-326.
[Yang X Q,Tang L J,Zhu Y.2011. Salt structures in the eastern margin of Precaspian Basin and their relationship with Ural Orogeny. Geological Journal of China Universities, 17(2): 318-326]
[16]
伊硕,黄文辉,金振奎,高白水. 2017. 滨里海盆地东缘石炭系KT-Ⅱ层碳酸盐岩微相特征与沉积环境研究: 以扎纳若尔地区为例. 沉积学报, 35(1): 139-150.
[Yi S,Huang W H,Jin Z K,Gao B S.2017. Characteristics of carbonate microfacies and sedimentary environment of the east margin of caspian basin in the Carboniferous KT-Ⅱ Layer: a case from Zanazor area. Acta Sedimentological Sinica, 35(1): 139-150]
[17]
张荻萩,王淑琴,赵文琪,范子菲,李治平. 2016. 控制碳酸盐岩油藏单井产能的主要地质因素分析: 以哈萨克斯坦北特鲁瓦油田 KT-Ⅰ 油层组为例. 岩石学报,32(3): 903-914.
[Zhang D Q,Wang S Q,Zhao W Q,Fan Z F,Li Z P.2016. The main geological control factors of single well productivity for carbonate reservoir: take the reservoir formation KT-Ⅰ in North Truva field,Kazakhstan as example. Acta Petrologica Sinica,32(3): 903-914]
[18]
赵中平,牟小清,陈丽. 2009. 滨里海盆地东缘石炭系碳酸盐岩储层主要成岩作用及控制因素分析. 现代地质, 23(5): 828-834.
[Zhao Z P,Mou X Q,Chen L.2009. Analysis on main diagenesises and controlling factors of carboniferous carbonate reservoirs in the eastern margin of Pre-Caspian Basin. Geoscience, 23(5): 828-834]
[19]
周瑞琦,傅恒,徐国盛,苗清,付振群. 2018. 东海陆架盆地西湖凹陷平湖组—花港组沉积层序. 沉积学报, 36(1): 132-141.
[Zhou R Q,Fu H,Xu G S,Miao Q,Fu Z Q.2018. Eocene Pinghu Formation-Oligocene Huagang Formation sequence stratigraphy and depositional model of Xihu sag in East China Sea Basin. Acta Sedimentological Sinica, 36(1): 132-141]
[20]
Beavington-Penney S J,Wright V P,Barnett A,Kennedy S,Covill M.2019. Integration of static and dynamic data and high-resolution sequence stratigraphy to define reservoir architecture and flow units within a‘super giant'gas condensate and oil field,Kazakhstan. Marine and Petroleum Geology, 101: 486-501.
[21]
Brett C E,Allison P A,DeSantis M K,Liddell W D,Kramer A.2009. Sequence stratigraphy,cyclic facies,and lagerstätten in the Middle Cambrian Wheeler and Marjum formations,Great Basin,Utah. Palaeogeography,Palaeoclimatology,Palaeoecology, 277(1-2): 9-33.
[22]
Chen J,Chough S K,Han Z,Lee J H.2011. An extensive erosion surface of a strongly deformed limestone bed in the Gushan and Chaomidian formations(late Middle Cambrian to Furongian),Shandong Province,China: sequence-stratigraphic implications. Sedimentary Geology, 233(1-4): 129-149.
[23]
Collins J,Narr W,Harris P M,Playton T E,Jenkins S D,Tankersley T H,Kenter J A.2013. Lithofacies,depositional environments,burial diagenesis,and dynamic field behavior in a Carboniferous slope reservoir,Tengiz Field(Republic of Kazakhstan),and comparison with outcrop analogs. Deposits,Architecture,and Controls of Carbonate Margin,Slope,and Basinal Settings. SEPM,Special Publication, 105: 50-83.
[24]
Kenter J A,Playton T,Katz D,Bellian J.2010. Application of outcrop Analogs to Characterize carbonate reservoirs in the Pricaspian Basin(Russian). SPE Caspian Carbonates Technology Conference.
[25]
Kohl D,Slingerland R,Arthur M,Bracht R,Engelder T.2014. Sequence stratigraphy and depositional environments of the Shamokin(Union Springs)Member,Marcellus Formation,and associated strata in the middle Appalachian Basin. AAPG Bulletin, 98(3): 483-513.
[26]
McLaughlin P I,Brett C E,McLaughlin S L T,Cornell S R.2004. High-resolution sequence stratigraphy of a mixed carbonate-siliciclastic,cratonic ramp(Upper Ordovician;Kentucky-Ohio,USA): insights into the relative influence of eustasy and tectonics through analysis of facies gradients. Palaeogeography,Palaeoclimatology,Palaeoecology, 210(2-4): 267-294.
[27]
Melezhik V A,Fallick A E,Grillo S M.2004. Subaerial exposure surfaces in a Paleoproterozoic 13C-rich dolostone sequence from the Pechenga Greenstone Belt: palaeoenvironmental and isotopic implications for the 2330-2060 ma global isotope excursion of 13C/12C. Precambrian Research, 133(1-2): 75-103.
[28]
Mitchum Jr R M,Vail P R,Thompson Ⅲ S.1977. Seismic stratigraphy and global changes of sea level: Part 2. The depositional sequence as a basic unit for stratigraphic analysis. Seismic Stratigraphy-Applications to Hydrocarbon Exploration. AAPG,Memoir 26: 205-212
[29]
Ronchi P,Ortenzi A,Borromeo O,Claps M,Zempolich W G.2010. Depositional setting and diagenetic processes and their impact on the reservoir quality in the Late Visean-Bashkirian Kashagan carbonate platform(Pre-Caspian Basin,Kazakhstan). AAPG Bulletin, 94(9): 1313-1348.
[30]
Vail P R,Hardenbol J,Todd R G.1984. Jurassic unconformities,chronostratigraphy,and sea-level changes from seismic stratigraphy and biostratigraphy. Interregional Unconformities and Hydrocarbon Accumulation
[31]
Weber L J,Francis B P,Harris P M M,Clark M.2003. Stratigraphy,lithofacies,and reservoir distribution,Tengiz Field,Kazakhstan. AAPG Bulletin: 351-394.
[32]
Zonenshain L P,Kuzmin M L,Natapov L M.1990. Geology of the USSR: a plate tectonic synthesis. In: Page B M(ed). American Geophysics Union, geodynamics Series 21. America Geophysical Union, Washington D C: 1-242.

Funding

Financially supported by the Fourteenth Five Year Plan forward looking Basic Science and Technology Project of CNPC(No.2022DJ3209)

RIGHTS & PERMISSIONS

版权所有.《古地理学报》编辑部

Comments

PDF(9767 KB)

Accesses

Citation

Detail

Sections
Recommended

/