Structure, Permeability and Fluid Flow in Sedimentary Clastic Rock Fault Zone

Gong Yajun, Zhang Kuihua, Wang Jinduo, Wang Qianjun, Wang Jianwei, Zeng Zhiping, Guo Ruichao, Niu Jingjing, Fan Jie, Liu Hui, Min Feiqiong

PDF(2181 KB)
PDF(2181 KB)
Earth Science ›› 2025, Vol. 50 ›› Issue (05) : 1968-1986. DOI: 10.3799/dqkx.2024.154

Structure, Permeability and Fluid Flow in Sedimentary Clastic Rock Fault Zone

Author information +
History +

Abstract

During the fault growth process, a fault zone with complex three-dimensional structure is formed. The fault zones occupying a very small volume in the Earth’s crust have a significant impact on the migration of fluids within the crust. The study of the interaction between fluids and solids in these fault zones is of great geological and engineering importance. Over the past 30 years, multidisciplinary research has been conducted on the characteristics of fault zones, permeability, and fluid migration patterns in sedimentary clastic rock. However, there is a lack of understanding and efforts in systematically comparing and comprehensively explaining the findings across different disciplines. In this paper, it summarizes the types, formation mechanisms, and geometric characteristics of fault zone. It systematically reviews data on the permeability of fault zones, analyzes three categories of factors influencing permeability changes, and elucidates the fluid migration behavior within fault zones, including dominant pathways, migration velocity, periodic frequencies, critical conditions, and multi-field coupled migration mechanisms. By summarizing the research progress over the past 30 years, in this paper it is expected to deepen our understanding of the complex geological processes of fault-fluid-mineralization. It is important to note that further interdisciplinary collaboration is needed to conduct more in-depth research on the fluid migration within fault zones.

Key words

fault / fault zone structure / fault zone permerbility / fluid migration / review / tectonics / petroleum geology

Cite this article

Download Citations
Gong Yajun , Zhang Kuihua , Wang Jinduo , et al . Structure, Permeability and Fluid Flow in Sedimentary Clastic Rock Fault Zone. Earth Science. 2025, 50(05): 1968-1986 https://doi.org/10.3799/dqkx.2024.154

References

Aydin, A., 1978. Small Faults Formed as Deformation Bands in Sandstone. Pure and Applied Geophysics, 116(4): 913-930. https://doi.org/10.1007/BF00876546
Aydin, A., Borja, R. I., Eichhubl, P., 2006. Geological and Mathematical Framework for Failure Modes in Granular Rock. Journal of Structural Geology, 28(1): 83-98. https://doi.org/10.1016/j.jsg.2005.07.008
Aydin, A., Johnson, A. M., 1978. Development of Faults as Zones of Deformation Bands and as Slip Surfaces in Sandstone. Pure and Applied Geophysics, 116(4): 931-942. https://doi.org/10.1007/BF00876547
Balsamo, F., Storti, F., Salvini, F., et al., 2010. Structural and Petrophysical Evolution of Extensional Fault Zones in Low-Porosity, Poorly Lithified Sandstones of the Barreiras Formation, NE Brazil. Journal of Structural Geology, 32(11): 1806-1826. https://doi.org/10.1016/j.jsg.2009.10.010
Barton, C. A., Zoback, M. D., Moos, D., 1995. Fluid Flow along Potentially Active Faults in Crystalline Rock. Geology, 23(8): 683. https://doi.org/10.1130/0091-7613(1995)0230683: ffapaf>2.3.co;2
Bauer, J. F., Meier, S., Philipp, S. L., 2015. Architecture, Fracture System, Mechanical Properties and Permeability Structure of a Fault Zone in Lower Triassic Sandstone, Upper Rhine Graben. Tectonophysics, 647: 132-145. https://doi.org/10.1016/j.tecto.2015.02.014
Beach, A., Welbon, A. I., Brockbank, P. J., et al., 1999. Reservoir Damage around Faults; Outcrop Examples from the Suez Rift. Petroleum Geoscience, 5(2): 109-116. https://doi.org/10.1144/petgeo.5.2.109
Bense, V. F., Gleeson, T., Loveless, S. E., et al., 2013. Fault Zone Hydrogeology. Earth-Science Reviews, 127: 171-192. https://doi.org/10.1016/j.earscirev.2013.09.008
Berg, S. S., Skar, T., 2005. Controls on Damage Zone Asymmetry of a Normal Fault Zone: Outcrop Analyses of a Segment of the Moab Fault, SE Utah. Journal of Structural Geology, 27(10): 1803-1822. https://doi.org/10.1016/j.jsg.2005.04.012
Berkowitz, B., 2002. Characterizing Flow and Transport in Fractured Geological Media: A Review. Advances in Water Resources, 25(8-12): 861-884. https://doi.org/10.1016/S0309-1708(02)00042-8
Bonnet, E., Bour, O., Odling, N. E., et al., 2001. Scaling of Fracture Systems in Geological Media. Reviews of Geophysics, 39(3): 347-383. https://doi.org/10.1029/1999rg000074
Braathen, A., Tveranger, J., Fossen, H., et al., 2009. Fault Facies and Its Application to Sandstone Reservoirs. AAPG Bulletin, 93(7): 891-917. https://doi.org/10.1306/03230908116
Brixel, B., Klepikova, M., Jalali, M. R., et al., 2020. Tracking Fluid Flow in Shallow Crustal Fault Zones: 1. Insights from Single-Hole Permeability Estimates. Journal of Geophysical Research: Solid Earth, 125(4): e2019JB018200. https://doi.org/10.1029/2019jb018200
Caine, J. S., Bruhn, R. L., Forster, C. B., 2010. Internal Structure, Fault Rocks, and Inferences Regarding Deformation, Fluid Flow, and Mineralization in the Seismogenic Stillwater Normal Fault, Dixie Valley, Nevada. Journal of Structural Geology, 32(11): 1576-1589. https://doi.org/10.1016/j.jsg.2010.03.004
Caine, J. S., Evans, J. P., Forster, C. B., 1996. Fault Zone Architecture and Permeability Structure. Geology, 24(11): 1025. https://doi.org/10.1130/0091-7613(1996)0241025: fzaaps>2.3.co;2
Caine, J. S., Forster, C. B., 1999. Fault Zone Architecture and Fluid Flow: Insights from Field Data and Numerical Modeling. Faults and Subsurface Fluid Flow in the Shallow Crust. American Geophysical Union, Washington, D. C., 101-127. https://doi.org/10.1029/gm113p0101
Cappa, F., Guglielmi, Y., Virieux, J., 2007. Stress and Fluid Transfer in a Fault Zone Due to Overpressures in the Seismogenic Crust. Geophysical Research Letters, 34(5): 2006GL028980. https://doi.org/10.1029/2006gl028980
Chen, H. H., 2023. Advances on Relationship between Strike-Slip Structures and Hydrocarbon Accumulations in Large Superimposed Craton Basins, China. Earth Science, 48(6): 2039-2066 (in Chinese with English abstract).
Chen, L., Talwani, P., 2001. Mechanism of Initial Seismicity Following Impoundment of the Monticello Reservoir, South Carolina. Bulletin of the Seismological Society of America, 91(6): 1582-1594. https://doi.org/10.1785/0120000293
Chester, F. M., Logan, J. M., 1986. Implications for Mechanical Properties of Brittle Faults from Observations of the Punchbowl Fault Zone, California. Pure and Applied Geophysics, 124(1): 79-106. https://doi.org/10.1007/BF00875720
Childs, C., Manzocchi, T., Walsh, J. J., et al., 2009. A Geometric Model of Fault Zone and Fault Rock Thickness Variations. Journal of Structural Geology, 31(2): 117-127. https://doi.org/10.1016/j.jsg.2008.08.009
Choi, J. H., Edwards, P., Ko, K., et al., 2016. Definition and Classification of Fault Damage Zones: A Review and a New Methodological Approach. Earth-Science Reviews, 152: 70-87. https://doi.org/10.1016/j.earscirev.2015.11.006
Clemenzi, L., Storti, F., Balsamo, F., et al., 2015. Fluid Pressure Cycles, Variations in Permeability, and Weakening Mechanisms along Low-Angle Normal Faults: The Tellaro Detachment, Italy. Geological Society of America Bulletin, 127(11-12): 1689-1710. https://doi.org/10.1130/b31203.1
Cowie, P. A., Scholz, C. H., 1992. Physical Explanation for the Displacement-Length Relationship of Faults Using a Post-Yield Fracture Mechanics Model. Journal of Structural Geology, 14(10): 1133-1148. https://doi.org/10.1016/0191-8141(92)90065-5
Cowie, P. A., Shipton, Z. K., 1998. Fault Tip Displacement Gradients and Process Zone Dimensions. Journal of Structural Geology, 20(8): 983-997. https://doi.org/10.1016/S0191-8141(98)00029-7
Cox, S. F., 2010. The Application of Failure Mode Diagrams for Exploring the Roles of Fluid Pressure and Stress States in Controlling Styles of Fracture‐ Controlled Permeability Enhancement in Faults and Shear Zones. Geofluids, 10(1-2): 217-233.
Deng, S., Li, H. L., Zhang, Z. P., et al., 2019. Structural Characterization of Intracratonic Strike-Slip Faults in the Central Tarim Basin. AAPG Bulletin, 103(1): 109-137. https://doi.org/10.1306/06071817354
Duan, Q.B., Yang, X.S., Chen, J.Y., 2015. Review of Geochemical and Petrophysical Responses to Fluid Processes within Seismogenic Fault Zones. Progress in Geophysics, 30(6): 2448-2462 (in Chinese with English abstract).
Eichhubl, P., Davatzes, N. C., Becker, S. P., 2009. Structural and Diagenetic Control of Fluid Migration and Cementation along the Moab Fault, Utah. AAPG Bulletin, 93(5): 653-681. https://doi.org/10.1306/02180908080
Evans, J.P., Bradbury, K.K., 2004. Faulting and Fracturing of Nonwelded Bishop Tuff, Eastern California. Vadose Zone Journal, 3(2): 602. https://doi.org/10.2136/vzj2004.0602
Evans, J. P., Forster, C. B., Goddard, J. V., 1997. Permeability of Fault-Related Rocks, and Implications for Hydraulic Structure of Fault Zones. Journal of Structural Geology, 19(11): 1393-1404. https://doi.org/10.1016/S0191-8141(97)00057-6
Evans, K. F., Genter, A., Sausse, J., 2005. Permeability Creation and Damage Due to Massive Fluid Injections into Granite at 3.5 km at Soultz: 1. Borehole Observations. Journal of Geophysical Research: Solid Earth, 110(B4): 2004JB003168. https://doi.org/10.1029/2004jb003168
Fan, J., Jiang, Y.L., Liu, J.D., et al., 2017. Relationship of Fault with Hydrocarbon Migration and Accumulation in Longfengshan Area, Changling Faulted Depression. Earth Science,42(10):1817-1829 (in Chinese with English abstract).
Faulkner, D. R., Jackson, C. A. L., Lunn, R. J., et al., 2010. A Review of Recent Developments Concerning the Structure, Mechanics and Fluid Flow Properties of Fault Zones. Journal of Structural Geology, 32(11): 1557-1575. https://doi.org/10.1016/j.jsg.2010.06.009
Faulkner, D. R., Mitchell, T. M., Jensen, E., et al., 2011. Scaling of Fault Damage Zones with Displacement and the Implications for Fault Growth Processes. Journal of Geophysical Research, 116(B5): B05403. https://doi.org/10.1029/2010jb007788
Fischer, T., Matyska, C., Heinicke, J., 2017. Earthquake-Enhanced Permeability-Evidence from Carbon Dioxide Release Following the ML 3.5 Earthquake in West Bohemia. Earth and Planetary Science Letters, 460: 60-67. https://doi.org/10.1016/j.epsl.2016.12.001
Fisher, Q. J., Haneef, J., Grattoni, C. A., et al., 2018. Permeability of Fault Rocks in Siliciclastic Reservoirs: Recent Advances. Marine and Petroleum Geology, 91: 29-42. https://doi.org/10.1016/j.marpetgeo.2017.12.019
Flodin, E. A., Aydin, A., 2004. Evolution of a Strike-Slip Fault Network, Valley of Fire State Park, Southern Nevada. Geological Society of America Bulletin, 116(1): 42. https://doi.org/10.1130/B25282.1
Fossen, H., 2010. Deformation Bands Formed during Soft-Sediment Deformation: Observations from SE Utah. Marine and Petroleum Geology, 27(1): 215-222. https://doi.org/10.1016/j.marpetgeo.2009.06.005
Fossen, H., Rotevatn, A., 2016. Fault Linkage and Relay Structures in Extensional Settings—A Review. Earth-Science Reviews, 154: 14-28. https://doi.org/10.1016/j.earscirev.2015.11.014
Fossen, H., Schultz, R. A., Shipton, Z. K., et al., 2007. Deformation Bands in Sandstone: A Review. Journal of the Geological Society, 164(4): 755-769. https://doi.org/10.1144/0016-76492006-036
Fossen, H., Soliva, R., Ballas, G., et al., 2018. A Review of Deformation Bands in Reservoir Sandstones: Geometries, Mechanisms and Distribution. Geological Society, London, Special Publications, 459(1): 9-33. https://doi.org/10.1144/sp459.4
Fu, X., Zhang, D.H., Yin, X.B., 2011. Deformation of Rock, Fluid Pressures and Hydrothermal Deposits. Geological Bulletin of China, 30(4): 595-604 (in Chinese with English abstract)..
Ghosh, K., Mitra, S., 2009. Structural Controls of Fracture Orientations, Intensity, and Connectivity, Teton Anticline, Sawtooth Range, Montana. AAPG Bulletin, 93(8): 995-1014. https://doi.org/10.1306/04020908115
Giger, S. B., Tenthorey, E., Cox, S. F., et al., 2007. Permeability Evolution in Quartz Fault Gouges under Hydrothermal Conditions. Journal of Geophysical Research: Solid Earth, 112(B7): 2006JB004828. https://doi.org/10.1029/2006jb004828
Gong, Y.J., Qin, F., Zhao, L.Q., et al., 2019. Fault Zone Structure and Fluid Flow Model of the Hongyanchi Fault in Southern Junggar Basin. Bulletin of Mineralogy, Petrology and Geochemistry, 38(4): 729-737 (in Chinese with English abstract).
Gong, Y.J., Zhang, K.H., Zeng, Z.P., et al., 2021. Origin of Overpressure, Vertical Transfer and Hydrocarbon Accumulation of Jurassic in Fukang Sag, Junggar Basin. Earth Science, 46(10): 3588-3600 (in Chinese with English abstract).
Gudmundsson, A., 2001. Fluid Overpressure and Flow in Fault Zones: Field Measurements and Models. Tectonophysics, 336(1-4): 183-197. https://doi.org/10.1016/S0040-1951(01)00101-9
Haney, M. M., Snieder, R., Sheiman, J., et al., 2005. A Moving Fluid Pulse in a Fault Zone. Nature, 437: 46. https://doi.org/10.1038/437046a
Hao, F., Zhu, W. L., Zou, H. Y., et al., 2015. Factors Controlling Petroleum Accumulation and Leakage in Overpressured Reservoirs. AAPG Bulletin, 99(5): 831-858. https://doi.org/10.1306/01021514145
Hao, F., Zou, H.Y., Jiang, J.Q., 2000. Dynamics of Petroleum Accumulation and Its Advances. Earth Science Frontiers, 7(3): 11-21 (in Chinese with English abstract).
Hennings, P., Allwardt, P., Paul, P., et al., 2012. Relationship between Fractures, Fault Zones, Stress, and Reservoir Productivity in the Suban Gas Field, Sumatra, Indonesia. AAPG Bulletin, 96(4): 753-772. https://doi.org/10.1306/08161109084
Hestir, K., Long, J. C. S., 1990. Analytical Expressions for the Permeability of Random Two-Dimensional Poisson Fracture Networks Based on Regular Lattice Percolation and Equivalent Media Theories. Journal of Geophysical Research: Solid Earth, 95(B13): 21565-21581. https://doi.org/10.1029/jb095ib13p21565
Holdsworth, R. E., McCaffrey, K. J. W., Dempsey, E., et al., 2019. Natural Fracture Propping and Earthquake-Induced Oil Migration in Fractured Basement Reservoirs. Geology, 47(8): 700-704. https://doi.org/10.1130/G46280.1
Ingebritsen, S. E., Manga, M., 2019. Earthquake Hydrogeology. Water Resources Research, 55(7): 5212-5216. https://doi.org/10.1029/2019wr025341
Jolley, S. J., Dijk, H., Lamens, J. H., et al., 2007. Faulting and Fault Sealing in Production Simulation Models: Brent Province, Northern North Sea. Petroleum Geoscience, 13(4): 321-340. https://doi.org/10.1144/1354-079306-733
Kang, Y.S., Guo, Q.J., Zhu, J.C., et al., 2003. Light Etched Physical Simulation Experiment on Oil Migration in Fractured Media. Acta Petrolei Sinica, 24(4): 44-47 (in Chinese with English abstract).
Kim, Y. S., Peacock, D. C. P., Sanderson, D. J., 2004. Fault Damage Zones. Journal of Structural Geology, 26(3): 503-517. https://doi.org/10.1016/j.jsg.2003.08.002
Kim, Y. S., Sanderson, D. J., 2005. The Relationship between Displacement and Length of Faults: A Review. Earth-Science Reviews, 68(3-4): 317-334. https://doi.org/10.1016/j.earscirev.2004.06.003
Knott, S. D., Beach, A., Brockbank, P. J., et al., 1996. Spatial and Mechanical Controls on Normal Fault Populations. Journal of Structural Geology, 18(2/3): 359-372. https://doi.org/10.1016/S0191-8141(96)80056-3
Kolyukhin, D., Torabi, A., 2012. Statistical Analysis of the Relationships between Faults Attributes. Journal of Geophysical Research (Solid Earth), 117(B5): B05406. https://doi.org/10.1029/2011JB008880
Li, S.Y., He, T.M., Yin, X.C., 2010. Introduction of Rock Fracture Mechanics. University of Science and Technology of China Press, Hefei (in Chinese).
Li, Y.T., Deng, S., Zhang, J.B., et al., 2023. Fault Zone Architecture of Strike-Slip Faults in Deep, Tight Carbonates and Development of Reservoir Clusters under Fault Control:A Case Study in Shunbei, Tarim Basin. Earth Science Frontiers, 30(6): 80-94 (in Chinese with English abstract).
Luo, Q., Wang, Q.J., Yang, W., et al., 2023. Internal Structural Units, Differential Characteristics of Permeability and Their Transport, Shielding and Reservoir Control Modes of Strike-Slip Faults. Earth Science, 48(6): 2342-2360 (in Chinese with English abstract).
Luo, X. R., 2011. Simulation and Characterization of Pathway Heterogeneity of Secondary Hydrocarbon Migration. AAPG Bulletin, 95(6): 881-898. https://doi.org/10.1306/11191010027
Ma, D.B., Wu, G.H., Zhu, Y.F., et al., 2019. Segmentation Characteristics of Deep Strike Slip Faults in the Tarim Basin and Its Control on Hydrocarbon Enrichment: Taking the Ordovician Strike Slip Fault in the Halahatang Oilfield in the Tabei Area as an Example. Earth Science Frontiers, 26(1): 225-237 (in Chinese with English abstract).
Manzocchi, T., Heath, A. E., Walsh, J. J., et al., 2002. The Representation of Two Phase Fault-Rock Properties in Flow Simulation Models. Petroleum Geoscience, 8(2): 119-132. https://doi.org/10.1144/petgeo.8.2.119
Neuzil, C. E., 1994. How Permeable are Clays and Shales? Water Resources Research, 30(2): 145-150. https://doi.org/10.1029/93WR02930
Nieto Camargo, J. E., Jensen, J. L., 2012. Analysis of Fault Permeability Using Mapping and Flow Modeling, Hickory Sandstone Aquifer, Central Texas. Natural Resources Research, 21(3): 395-409. https://doi.org/10.1007/s11053-012-9181-5
Pei, Y. W., Paton, D. A., Knipe, R. J., et al., 2015. A Review of Fault Sealing Behaviour and Its Evaluation in Siliciclastic Rocks. Earth-Science Reviews, 150: 121-138. https://doi.org/10.1016/j.earscirev.2015.07.011
Rotevatn, A., Bastesen, E., 2014. Fault Linkage and Damage Zone Architecture in Tight Carbonate Rocks in the Suez Rift (Egypt): Implications for Permeability Structure along Segmented Normal Faults. Geological Society, London, Special Publications, 374(1): 79-95. https://doi.org/10.1144/sp374.12
Savage, H. M., Brodsky, E. E., 2011. Collateral Damage: Evolution with Displacement of Fracture Distribution and Secondary Fault Strands in Fault Damage Zones. Journal of Geophysical Research, 116(B3): B03405. https://doi.org/10.1029/2010jb007665
Seebeck, H., Nicol, A., Walsh, J. J., et al., 2014. Fluid Flow in Fault Zones from an Active Rift. Journal of Structural Geology, 62: 52-64. https://doi.org/10.1016/j.jsg.2014.01.008
Shipton, Z. K., Cowie, P. A., 2001. Damage Zone and Slip-Surface Evolution over Μm to Km Scales in High- Porosity Navajo Sandstone, Utah. Journal of Structural Geology, 23(12): 1825-1844. https://doi.org/10.1016/S0191-8141(01)00035-9
Sibson, R. H., 1977. Fault Rocks and Fault Mechanisms. Journal of the Geological Society, 133(3): 191-213. https://doi.org/10.1144/gsjgs.133.3.0191
Smeraglia, L., Fabbi, S., Billi, A., et al., 2022. How Hydrocarbons Move along Faults: Evidence from Microstructural Observations of Hydrocarbon-Bearing Carbonate Fault Rocks. Earth and Planetary Science Letters, 584: 117454. https://doi.org/10.1016/j.epsl.2022.117454
Song, M.S., Zhao, L. Q., Gong, Y.J., et al., 2016. Quantitative Assessment on Trap Oil-Bearing Property in Ultra-Denudation Zones at the Northwestern Margin of Junggar Basin. Acta Petrolei Sinica, 37(1): 64-72 (in Chinese with English abstract).
Sperrevik, S., Færseth, R. B., Gabrielsen, R. H., 2000. Experiments on Clay Smear Formation along Faults. Petroleum Geoscience, 6(2): 113-123. https://doi.org/10.1144/petgeo.6.2.113
Sperrevik, S., Gillespie, P.A., Fisher, Q. J., et al., 2002. Empirical Estimation of Fault Rock Properties.Norwegian Petroleum Society Special Publications,11(3):109-125. https://doi.org/10.1016/S0928-8937(02)80010-8
Storti, F., Holdsworth, R. E., Salvini, F., 2003. Intraplate Strike-Slip Deformation Belts. Geological Society, London, Special Publications, 210(1): 1-14. https://doi.org/10.1144/gsl.sp.2003.210.01.01
Su, S.M., Jiang, Y.L., 2021. Fault Zone Structures and Its Relationship with Hydrocarbon Migration and Accumulation in Petroliferous Basin. Journal of China University of Petroleum (Edition of Natural Science), 45(4): 32-41 (in Chinese with English abstract).
Sun,T.W., Fu,G., Lü,Y.F., et al., 2012. A Discussion on Fault Conduit Fluid Mechanism and Fault Conduit Form. Geological Review, 58(6): 1081-1090 (in Chinese with English abstract).
Talwani, P., Chen, L. Y., Gahalaut, K., 2007. Seismogenic Permeability, k s. Journal of Geophysical Research: Solid Earth, 112(B7): 2006JB004665. https://doi.org/10.1029/2006jb004665
Torabi, A., Berg, S. S., 2011. Scaling of Fault Attributes: A Review. Marine and Petroleum Geology, 28(8): 1444-1460. https://doi.org/10.1016/j.marpetgeo.2011.04.003
Valoroso, L., Chiaraluce, L., Collettini, C., 2014. Earthquakes and Fault Zone Structure. Geology, 42(4): 343-346. https://doi.org/10.1130/g35071.1
Walker, R. J., Holdsworth, R. E., Imber, J., et al., 2013. Fault Zone Architecture and Fluid Flow in Interlayered Basaltic Volcaniclastic-Crystalline Sequences. Journal of Structural Geology, 51: 92-104. https://doi.org/10.1016/j.jsg.2013.03.004
Wang, L. C., Cardenas, M. B., 2017. Linear Permeability Evolution of Expanding Conduits Due to Feedback between Flow and Fast Phase Change. Geophysical Research Letters, 44(9): 4116-4123. https://doi.org/10.1002/2017gl073161
Wang, Y., Su, B.Y., 2002. Research on the Behavior of Fluid Flow in a Single Fracture and Its Equivalent Hydraulic Aperture. Advances in Water Science, 13(1): 61-68 (in Chinese with English abstract).
Wang, Z. , Huang, L., Liu, C.Y., et al., 2024. Distribution of Strike-Slip Fault-Fracture Volume and Its Controlling Factors in the Southwestern Ordos Basin. Journal of China University of Mining & Technology, 53(4): 793-807 (in Chinese with English abstract).
Warren-Smith, E., Fry, B., Wallace, L., et al., 2019. Episodic Stress and Fluid Pressure Cycling in Subducting Oceanic Crust during Slow Slip. Nature Geoscience, 12: 475-481. https://doi.org/10.1038/s41561-019-0367-x
Wells, D. L., Coppersmith, K. J., 1994. New Empirical Relationships among Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface Displacement. The Bulletin of the Seismological Society of America, 84(4): 974-1002. https://doi.org/10.1785/BSSA0840040974
Wibberley, C. A., Yielding, G., Di Toro, G., 2008. Recent Advances in the Understanding of Fault Zone Internal Structure: A Review. Geological Society of London Special Publications, 299(1): 5-33. https://doi.org/10.1144/SP299.2
Williams, R. T., Goodwin, L. B., Mozley, P. S., 2017. Diagenetic Controls on the Evolution of Fault-Zone Architecture and Permeability Structure: Implications for Episodicity of Fault-Zone Fluid Transport in Extensional Basins. Geological Society of America Bulletin, 129(3/4): 464-478. https://doi.org/10.1130/B31443.1
Xia, Z.G., 1983. Classification, Identification and Formation Conditions of Fault Rocks. Geological Review, 29(6): 578-583 (in Chinese with English abstract).
Xu, C.G., 2016. Strike-Slip Transfer Zone and Its Control on Formation of Medium and Large-Sized Oilfields in Bohai Sea Area. Earth Science, 41(9): 1548-1560 (in Chinese with English abstract).
Xu, G.X., Zhang, Y.X., Ha, Q.L., 2003. Super-Cubic and Sub-Cubic Law of Rough Fracture Seepage and Its Experiments Study. Journal of Hydraulic Engineering, 34(3): 74-79 (in Chinese with English abstract).
Xue, L., Li, H. B., Brodsky, E. E., et al., 2013. Continuous Permeability Measurements Record Healing Inside the Wenchuan Earthquake Fault Zone. Science, 340(6140): 1555-1559. https://doi.org/10.1126/science.1237237
Yamaguchi, A., Cox, S. F., Kimura, G., et al., 2011. Dynamic Changes in Fluid Redox State Associated with Episodic Fault Rupture along a Megasplay Fault in a Subduction Zone. Earth and Planetary Science Letters, 302(3-4): 369-377. https://doi.org/10.1016/j.epsl.2010.12.029
Yang, G.L., Ren, Z.L., He, F.Q., 2022. Fault-Fracture Body Growth and Hydrocarbon Enrichment of the Zhenjing Area, the Southwestern Margin of the Ordos Basin. Oil & Gas Geology, 43(6): 1382-1396 (in Chinese with English abstract).
Yang, T.H., Shi, W.H., Li, S.C., et al., 2016. State of the Art and Trends of Water-Inrush Mechanism of Nonlinear Flow in Fractured Rock Mass. Journal of China Coal Society, 41(7): 1598-1609 (in Chinese with English abstract).
Yang, T.H., Tang, C.A., Zhu, W.C., et al., 2001. Coupling Analysis of Seepage and Stresses in Rock Failure Process. Chinese Journal of Geotechnical Engineering, 23(4): 489-493 (in Chinese with English abstract).
Yao, Y.D., Ge, J.L., 2003. New Pattern and Its Rules of Oil Non-Darcy Flow in Porous Media. Oil Drilling & Production Technology, 25(5): 40-42 (in Chinese with English abstract).
Yu, H., Li, S.J., Man, L.T., et al., 2011. Research Progress of Water Flow in Fractal Fracture Network System of Rock Mass. Journal of Harbin Institute of Technology, 43(S1): 94-99 (in Chinese with English abstract).
Zeng, L.B., Gong, L., Su, X.C., et al., 2024. Natural Fractures in Deep to Ultra-Deep Tight Reservoirs: Distribution and Development. Oil & Gas Geology, 45(1): 1-14 ( in Chinese with English abstract).
Zhang, P.Z., Xu, X.W., Wen, X.Z., et al., 2008. Slip Rates and Recurrence Intervals of the Longmen Shan Active Fault Zone and Tectonic Implications for the Mechanism of the May 12 Wenchuan Earthquake, 2008, Sichuan, China. Chinese Journal of Geophysics, 51(4): 1066-1073 (in Chinese with English abstract).
Zhang, Y., Gartrell, A., Underschultz, J. R., et al., 2009. Numerical Modelling of Strain Localisation and Fluid Flow during Extensional Fault Reactivation: Implications for Hydrocarbon Preservation. Journal of Structural Geology, 31(3): 315-327. https://doi.org/10.1016/j.jsg.2008.11.006

Comments

PDF(2181 KB)

Accesses

Citation

Detail

Sections
Recommended

/