
Sedimentary Environment and Organic Matter Enrichment Mechanism of the Lower Member of the Xingouzui Formation in the Jianghan Basin during the Early Eocene
Fan Xiaojie, Teng Xiaohua, Wang Chunlian, Zhang Jingyu, Lu Yangbo, Zhang Liang, Lu Yongchao, Li Long, Qin Zhanjie
Sedimentary Environment and Organic Matter Enrichment Mechanism of the Lower Member of the Xingouzui Formation in the Jianghan Basin during the Early Eocene
The potential of continental shale oil resources in China is enormous, and the lower member of the Xingouzui Formation (LXF) from the Early Eocene serves as the primary target for shale oil exploration in the Jianghan basin. Previous research has mainly focused on hydrocarbon generation potential and reservoir characteristics, while discussions regarding its depositional environment evolution and mechanisms of organic matter enrichment remain relatively scarce.This study takes the Early Eocene LXF from the SKD1 and CY1 boreholes as the main research object. Based on lithofacies, elemental, and isotopic geochemical analyses,it investigates the paleoenvironmental changes and organic matter enrichment mechanisms of the LXF. The results indicate that organic matter content in the LXF is relatively low, with an average total organic carbon (TOC) of 0.9%. During the Paleocene-Eocene Thermal Maximum (PETM), rapid warming and oxidative conditions accelerated the decomposition of organic matter, resulting in relatively low organic matter content, with a TOC of only 0.5%. In contrast, during arid climatic periods, increasing lake salinity led to the sequential deposition of evaporative minerals such as anhydrite and glauberite. Under high-salinity conditions, halophilic organisms contribute to part of the productivity. High salt and hypoxic environment promotes the production and preservation of organic matter, with average TOC increaing to 2.56%. These findings indicate that organic matter enrichment in the Jianghan basin during the Eocene was primarily controlled by synergy of productivity and preservation conditions. This study provides insights into the mechanisms of organic matter preservation in continental saline lacustrine basins under greenhouse climate conditions and provides a theoretical basis for identifying favorable stratigraphic intervals for future oil and gas exploration.
Jianghan basin / Early Eocene / organic matter enrichment / paleoenvironment / elemental composition / sedimentology / petroleum geology
Algeo, T. J., Maynard, J. B., 2004. Trace-Element Behavior and Redox Facies in Core Shales of Upper Pennsylvanian Kansas-Type Cyclothems. Chemical Geology, 206(3-4): 289-318. https://doi.org/10.1016/j.chemgeo.2003.12.009
|
Barbe, A., Grimalt, J. O., Pueyo, J. J., et al., 1990. Characterization of Model Evaporitic Environments through the Study of Lipid Components. Organic Geochemistry, 16(4-6): 815-828. https://doi.org/10.1016/0146-6380(90)90120-o
|
Berner, R. A., 2003. The Long-Term Carbon Cycle, Fossil Fuels and Atmospheric Composition. Nature, 426(6964): 323-326. https://doi.org/10.1038/nature02131
|
Cavinato, G. P., Carusi, C., Dall’Asta, M., et al., 2002. Sedimentary and Tectonic Evolution of Plio-Pleistocene Alluvial and Lacustrine Deposits of Fucino Basin (Central Italy). Sedimentary Geology, 148(1/2): 29-59. https://doi.org/10.1016/S0037-0738(01)00209-3
|
Chivas, A. R., De Deckker, P., Shelley, J. M. G., 1985. Strontium Content of Ostracods Indicates Lacustrine Palaeosalinity. Nature, 316: 251-253. https://doi.org/10.1038/316251a0
|
Dasch, E. J., 1969. Strontium Isotopes in Weathering Profiles, Deep-Sea Sediments, and Sedimentary Rocks. Geochimica et Cosmochimica Acta, 33(12): 1521-1552. https://doi.org/10.1016/0016-7037(69)90153-7
|
Deng, S. C., Dong, H. L., Lv, G., et al., 2010. Microbial Dolomite Precipitation Using Sulfate Reducing and Halophilic Bacteria: Results from Qinghai Lake, Tibetan Plateau, NW China. Chemical Geology, 278(3-4): 151-159. https://doi.org/10.1016/j.chemgeo.2010.09.008
|
Dickens, G. R., O’Neil, J. R., Rea, D. K., et al., 1995. Dissociation of Oceanic Methane Hydrate as a Cause of the Carbon Isotope Excursion at the End of the Paleocene. Paleoceanography, 10(6): 965-971. https://doi.org/10.1029/95pa02087
|
Feng, Y. L., Li, S. T., Lu, Y. C., 2013. Sequence Stratigraphy and Architectural Variability in Late Eocene Lacustrine Strata of the Dongying Depression, Bohai Bay Basin, Eastern China. Sedimentary Geology, 295: 1-26. https://doi.org/10.1016/j.sedgeo.2013.07.004
|
Gou, Q. Y., Xu, S., Hao, F., et al., 2023. Petrography and Mineralogy Control the Nm-Μm-Scale Pore Structure of Saline Lacustrine Carbonate-Rich Shales from the Jianghan Basin, China. Marine and Petroleum Geology, 155: 106399. https://doi.org/10.1016/j.marpetgeo.2023.106399
|
Guo, Z. T., Sun, B., Zhang, Z. S., et al., 2008. A Major Reorganization of Asian Climate by the Early Miocene. Climate of the Past, 4(3): 153-174. https://doi.org/10.5194/cp-4-153-2008
|
Hao, F., Zhou, X. H., Zhu, Y. M., et al., 2011. Lacustrine Source Rock Deposition in Response to Co-Evolution of Environments and Organisms Controlled by Tectonic Subsidence and Climate, Bohai Bay Basin, China. Organic Geochemistry, 42(4): 323-339. https://doi.org/10.1016/j.orggeochem.2011.01.010
|
Hu, S. B., Kohn, B. P., Raza, A., et al., 2006. Cretaceous and Cenozoic Cooling History across the Ultrahigh Pressure Tongbai-Dabie Belt, Central China, from Apatite Fission-Track Thermochronology. Tectonophysics, 420(3-4): 409-429. https://doi.org/10.1016/j.tecto.2006.03.027
|
Hu, T., Pang, X. Q., Jiang, S., et al., 2018. Impact of Paleosalinity, Dilution, Redox, and Paleoproductivity on Organic Matter Enrichment in a Saline Lacustrine Rift Basin: A Case Study of Paleogene Organic-Rich Shale in Dongpu Depression, Bohai Bay Basin, Eastern China. Energy & Fuels, 32(4): 5045-5061. https://doi.org/10.1021/acs.energyfuels.8b00643
|
Huang, C. J., Hinnov, L., 2014. Evolution of an Eocene- Oligocene Saline Lake Depositional System and Its Controlling Factors, Jianghan Basin, China. Journal of Earth Science, 25(6): 959-976. https://doi.org/10.1007/s12583-014-0499-2
|
Huang, C. J., Hinnov, L., 2019. Astronomically Forced Climate Evolution in a Saline Lake Record of the Middle Eocene to Oligocene, Jianghan Basin, China. Earth and Planetary Science Letters, 528: 115846. https://doi.org/10.1016/j.epsl.2019.115846
|
Jiang, Z. X., Chen, D. Z., Qiu, L. W., et al., 2007. Source-Controlled Carbonates in a Small Eocene Half-Graben Lake Basin (Shulu Sag) in Central Hebei Province, North China. Sedimentology, 54(2): 265-292. https://doi.org/10.1111/j.1365-3091.2006.00834.x
|
Kim, S.T., Coplen, T.B., Horita, J., 2015. Normalization of Stable Isotope Data for Carbonate Minerals: Implementation of IUPAC Guidelines. Geochimica et Cosmochimica Acta, 158: 276-289. https://doi.org/10.1016/j.gca.2015.02.011
|
Kumar, S., Bhavya, P. S., Ramesh, R., et al., 2018. Nitrogen Uptake Potential under Different Temperature- Salinity Conditions: Implications for Nitrogen Cycling under Climate Change Scenarios. Marine Environmental Research, 141: 196-204. https://doi.org/10.1016/j.marenvres.2018.09.001
|
Leng, M. J., Marshall, J. D., 2004. Palaeoclimate Interpretation of Stable Isotope Data from Lake Sediment Archives. Quaternary Science Reviews, 23(7-8): 811-831. https://doi.org/10.1016/j.quascirev.2003.06.012
|
Li, Q. Q., Xu, S., Hao, F., et al., 2021. Geochemical Characteristics and Organic Matter Accumulation of Argillaceous Dolomite in a Saline Lacustrine Basin: A Case Study from the Paleogene Xingouzui Formation, Jianghan Basin, China. Marine and Petroleum Geology, 128: 105041. https://doi.org/10.1016/j.marpetgeo.2021.105041
|
Li, Q. Q., Xu, S., Zhang, L., et al., 2022. Shale Oil Enrichment Mechanism of the Paleogene Xingouzui Formation, Jianghan Basin, China. Energies, 15(11): 4038. https://doi.org/10.3390/en15114038
|
Liang, C., Jiang, Z. X., Cao, Y. C., et al., 2018. Sedimentary Characteristics and Origin of Lacustrine Organic-Rich Shales in the Salinized Eocene Dongying Depression. GSA Bulletin, 130(1-2): 154-174. https://doi.org/10.1130/b31584.1
|
Liang, C., Yang, B., Cao, Y. C., et al., 2024. Salinization Mechanism of Lakes and Controls on Organic Matter Enrichment: From Present to Deep-Time Records. Earth-Science Reviews, 251: 104720. https://doi.org/10.1016/j.earscirev.2024.104720
|
Lin, C., Eriksson, K., Li, S., et al., 2001. Sequence Architecture, Depositional Systems, and Controls on Development of Lacustrine Basin Fills in Part of the Erlian Basin, Northeast China. AAPG, 85(11): 2017-2043. https://doi.org/10.1306/8626D0DB-173B-11D7-8645000102C1865D
|
Liu, J. S., Algeo, T. J., 2020. Beyond Redox: Control of Trace-Metal Enrichment in Anoxic Marine Facies by Watermass Chemistry and Sedimentation Rate. Geochimica et Cosmochimica Acta, 287: 296-317. https://doi.org/10.1016/j.gca.2020.02.037
|
Liu, Q. Y., Li, P., Jin, Z. J., et al., 2022. Organic-Rich Formation and Hydrocarbon Enrichment of Lacustrine Shale Strata: A Case Study of Chang 7 Member. Science China Earth Sciences, 52(2): 270-290 (in Chinese). https://doi.org/10.1007/s11430-021-9819-y
|
Lu, Y. B., Hao, F., Lu, Y. C., et al., 2020. Lithofacies and Depositional Mechanisms of the Ordovician-Silurian Wufeng-Longmaxi Organic-Rich Shales in the Upper Yangtze Area, Southern China. AAPG Bulletin, 103(1): 97-129. https://doi.org/10.1306/04301918099
|
McBride, E. F., 1974. Significance of Color in Red, Green, Purple, Olive, Brown, and Gray Beds of Difunta Group, Northeastern Mexico. SEPM Journal of Sedimentary Research, 44: 760-773. https://doi.org/10.1306/212F6B9A-2B24-11D7-8648000102C1865D
|
McLennan, S. M., 2001. Relationships between the Trace Element Composition of Sedimentary Rocks and Upper Continental Crust. Geochemistry, Geophysics, Geosystems, 2(4): 1021-1024. https://doi.org/10.1029/2000GC000109
|
Mendonça, R., Müller, R. A., Clow, D., et al., 2017. Organic Carbon Burial in Global Lakes and Reservoirs. Nature Communications, 8(1): 1694. https://doi.org/10.1038/s41467-017-01789-6
|
Meyers, P. A., 1994. Preservation of Elemental and Isotopic Source Identification of Sedimentary Organic Matter. Chemical Geology, 114(3-4): 289-302. https://doi.org/10.1016/0009-2541(94)90059-0
|
Peng, W., 2019. The Beach Bar Sand Deposit in the Lower Segment of Xingouzui Formation and Its Distribution Characteristics. Journal of Yangtze University (Natural Science Edition), 16(3): 9-15 (in Chinese with English abstract).
|
Raiswell, R., Buckley, F., Berner, R.A., et al., 1988. Degree of Pyritization of Iron as a Paleoenvironmental Indicator of Bottom-Water Oxygenation. Journal of Sedimentary Research, 58: 812-819.
|
Raven, M. R., Fike, D. A., Gomes, M. L., et al., 2018. Organic Carbon Burial during OAE2 Driven by Changes in the Locus of Organic Matter Sulfurization. Nature Communications, 9(1): 3409. https://doi.org/10.1038/s41467-018-05943-6
|
Rimmer, S. M., Thompson, J. A., Goodnight, S. A., et al., 2004. Multiple Controls on the Preservation of Organic Matter in Devonian-Mississippian Marine Black Shales: Geochemical and Petrographic Evidence. Palaeogeography, Palaeoclimatology, Palaeoecology, 215(1-2): 125-154. https://doi.org/10.1016/j.palaeo.2004.09.001
|
Shen, J., Schoepfer, S. D., Feng, Q. L., et al., 2015. Marine Productivity Changes during the End-Permian Crisis and Early Triassic Recovery. Earth-Science Reviews, 149: 136-162. https://doi.org/10.1016/j.earscirev.2014.11.002
|
Sluijs, A., Röhl, U., Schouten, S., et al., 2008. Arctic Late Paleocene-Early Eocene Paleoenvironments with Special Emphasis on the Paleocene-Eocene Thermal Maximum (Lomonosov Ridge, Integrated Ocean Drilling Program Expedition 302). Paleoceanography, 23(1): 2007PA001495. https://doi.org/10.1029/2007pa001495
|
Soliman, M. F., Aubry, M. P., Schmitz, B., et al., 2011. Enhanced Coastal Paleoproductivity and Nutrient Supply in Upper Egypt during the Paleocene/Eocene Thermal Maximum (PETM): Mineralogical and Geochemical Evidence. Palaeogeography, Palaeoclimatology, Palaeoecology, 310(3-4): 365-377. https://doi.org/10.1016/j.palaeo.2011.07.027
|
Stoll, H. M., Shimizu, N., Archer, D., et al., 2007. Coccolithophore Productivity Response to Greenhouse Event of the Paleocene-Eocene Thermal Maximum. Earth and Planetary Science Letters, 258(1/2): 192-206. https://doi.org/10.1016/j.epsl.2007.03.037
|
Strahl, H., Greie, J. C., 2008. The Extremely Halophilic Archaeon Halobacterium Salinarum R1 Responds to Potassium Limitation by Expression of the K+-Transporting KdpFABC P-Type ATPase and by a Decrease in Intracellular K+. Extremophiles, 12(6): 741-752. https://doi.org/10.1007/s00792-008-0177-3
|
Teng, X.H., Wang, C.L., Liu, C.L., et al., 2021. Paleocene-Eocene Thermal Maximum Lacustrine Sediments in Deep Drill Core SKD1 in the Jianghan Basin: A Record of Enhanced Precipitation in Central China. Global and Planetary Change, 205: 103620. https://doi.org/10.1016/j.gloplacha.2021.103620
|
Teng, X. H., Fang, X. M., Kaufman, A. J., et al., 2019. Sedimentological and Mineralogical Records from Drill Core SKD1 in the Jianghan Basin, Central China, and Their Implications for Late Cretaceous-Early Eocene Climate Change. Journal of Asian Earth Sciences, 182: 103936. https://doi.org/10.1016/j.jseaes.2019.103936
|
Teng, X. H., Han, W. X., Ye, C. C., et al., 2013. Asian Inland Drought and Its Origin in Carbonate Isotope Records from Hole SG-1 in Qaidam Basin since 1.0 Ma. Quaternary Sciences, 33(5): 866-875 (in Chinese with English abstract).
|
Teng, X. H., Wang, C. L., Shen, L. J., et al., 2022. Paleoclimate during the Paleocene-Eocene Extreme Thermal Event Recorded by the Deep Drill Core SKD1 in the Jianghan Basin. Acta Geoscientica Sinica, 43(1): 65-72 (in Chinese with English abstract).
|
Tribovillard, N., Algeo, T. J., Lyons, T., et al., 2006. Trace Metals as Paleoredox and Paleoproductivity Proxies: An Update. Chemical Geology, 232(1-2): 12-32. https://doi.org/10.1016/j.chemgeo.2006.02.012
|
Tyson, R. V., 2001. Sedimentation Rate, Dilution, Preservation and Total Organic Carbon: Some Results of a Modelling Study. Organic Geochemistry, 32(2): 333-339. https://doi.org/10.1016/S0146-6380(00)00161-3
|
Wang, B.J., Lin, C.S., Chen, Y., et al., 2006. Episodic Tectonic Movement and Evolutional Character in Jianghan Basin. Oil Geophysical Prospecting, 41(2): 226-230, 248 (in Chinese with English abstract).
|
Wei, D.Y., 1998. Glauberite in Salt Deposits and Its Genesis. Minerals and Rocks, 8(2): 92-98 (in Chinese with English abstract).
|
Wei, W., Algeo, T. J., Lu, Y. B., et al., 2018. Identifying Marine Incursions into the Paleogene Bohai Bay Basin Lake System in Northeastern China. International Journal of Coal Geology, 200: 1-17. https://doi.org/10.1016/j.coal.2018.10.001
|
Westerhold, T., Marwan, N., Drury, A. J., et al., 2020. An Astronomically Dated Record of Earth’s Climate and Its Predictability over the Last 66 Million Years. Science, 369(6509): 1383-1387. https://doi.org/10.1126/science.aba6853
|
Wu, L. L., Mei, L. F., Liu, Y. S., et al., 2017. Multiple Provenance of Rift Sediments in the Composite Basin-Mountain System: Constraints from Detrital Zircon U-Pb Geochronology and Heavy Minerals of the Early Eocene Jianghan Basin, Central China. Sedimentary Geology, 349: 46-61. https://doi.org/10.1016/j.sedgeo.2016.12.003
|
Xie, Y. L., Wu, F. L., Fang, X. M., 2022. A Transient South Subtropical Forest Ecosystem in Central China Driven by Rapid Global Warming during the Paleocene-Eocene Thermal Maximum. Gondwana Research, 101: 192-202. https://doi.org/10.1016/j.gr.2021.08.005
|
Xu, L.X., Yan, C.D., Yu, H.L., et al., 1995. Age of Eogene Volcanic Rocks in Jianghan Basin. Oil & Gas Geology, 16(2):132-137 (in Chinese with English abstract).
|
Zhang, J. Y., Wang, C. L., Teng, X. H., et al., 2024. Orbital Modulation of an Intensified Hydrological Cycle during the Paleocene-Eocene Thermal Maximum. Earth and Planetary Science Letters, 635: 118693. https://doi.org/10.1016/j.epsl.2024.118693
|
Zou, C.N., Yang, Z., Li, G.X., et al., 2022. Why can China Realize the Continental‘Shale Oil Revolution’?.Earth Science, 47(10): 3860-3863 (in Chinese with English abstract).
|
感谢杜一凡在碳氧同位素测试和数据校正中提供的帮助!
/
〈 |
|
〉 |