人工湿地去除抗生素抗性基因

PDF(389 KB)
PDF(389 KB)
Earth Science ›› 2024, Vol. 49 ›› Issue (09) : 3440-3444. DOI: 10.3799/dqkx.2024.082

Author information +
History +

CLC number

X703

Cite this article

Download Citations

References

Abou-Kandil, A., Shibli, A., Azaizeh, H., et al., 2021. Fate and Removal of Bacteria and Antibiotic Resistance Genes in Horizontal Subsurface Constructed Wetlands: Effect of Mixed Vegetation and Substrate Type. The Science of the Total Environment, 759: 144193. https://doi.org/10.1016/j.scitotenv.2020.144193
Ajibade, F. O., Yin, W. X., Guadie, A., et al., 2023. Impact of Biochar Amendment on Antibiotic Removal and ARGs Accumulation in Constructed Wetlands for Low C/N Wastewater Treatment. Chemical Engineering Journal, 459: 141541. https://doi.org/10.1016/j.cej.2023.141541
Ávila, C., García-Galán, M. J., Borrego, C. M., et al., 2021. New Insights on the Combined Removal of Antibiotics and ARGs in Urban Wastewater through the Use of Two Configurations of Vertical Subsurface Flow Constructed Wetlands. Science of the Total Environment, 755: 142554. https://doi.org/10.1016/j.scitotenv.2020.142554
Boopathy, R., 2017. Presence of Methicillin Resistant Staphylococcus Aureus (MRSA) in Sewage Treatment Plant. Bioresource Technology, 240: 144-148. https://doi.org/10.1016/j.biortech.2017.02.093
Chen, B., Hao, L. J., Guo, X. Y., et al., 2015. Prevalence of Antibiotic Resistance Genes of Wastewater and Surface Water in Livestock Farms of Jiangsu Province, China. Environmental Science and Pollution Research, 22(18): 13950-13959. https://doi.org/10.1007/s11356-015-4636-y
Chen, J., Deng, W. J., Liu, Y. S., et al., 2019. Fate and Removal of Antibiotics and Antibiotic Resistance Genes in Hybrid Constructed Wetlands. Environmental Pollution, 249: 894-903. https://doi.org/10.1016/j.envpol.2019.03.111
Chen, J., Ying, G. G., Wei, X. D., et al., 2016. Removal of Antibiotics and Antibiotic Resistance Genes from Domestic Sewage by Constructed Wetlands: Effect of Flow Configuration and Plant Species. The Science of the Total Environment, 571: 974-982. https://doi.org/10.1016/j.scitotenv.2016.07.085
Chen, P. P., 2023. Photocatalytic-Constructed Wetland Removal of Antibiotic Resistance Genes and Its Mechanism (Dissertation). Northeast Normal University, Changchun (in Chinese with English abstract).
Chen, P. P., Yu, X. F., Zhang, J. Y., 2023. Photocatalysis Enhanced Constructed Wetlands Effectively Remove Antibiotic Resistance Genes from Domestic Wastewater. Chemosphere, 325: 138330. https://doi.org/10.1016/j.chemosphere.2023.138330
Cheng, Y. X., Wu, D., Chen, Q. L., et al., 2021. Optimization of Tidal-Combined Flow Constructed Wetland System and Its Removal Effect on Antibiotic Resistance Genes. Environmental Science, 42(8): 3799-3807 (in Chinese with English abstract).
Cui, E. P., Zhou, Z. C., Gao, F., et al., 2023. Roles of Substrates in Removing Antibiotics and Antibiotic Resistance Genes in Constructed Wetlands: A Review. The Science of the Total Environment, 859(Pt 1): 160257. https://doi.org/10.1016/j.scitotenv.2022.160257
Du, J. P., Xu, T., Guo, X. P., et al., 2022. Characteristics and Removal of Antibiotics and Antibiotic Resistance Genes in a Constructed Wetland from a Drinking Water Source in the Yangtze River Delta. The Science of the Total Environment, 813: 152540. https://doi.org/10.1016/j.scitotenv.2021.152540
Feng, L. K., 2020. Enhancement of Pollution Removal of Swine Wastewater Using a Biochar-Amended Aerated Vertical Flow Constructed Wetland (Dissertation). Northwest A & F University, Yangling (in Chinese with English abstract).
García, J., García-Galán, M. J., Day, J. W., et al., 2020. A Review of Emerging Organic Contaminants (EOCs), Antibiotic Resistant Bacteria (ARB), and Antibiotic Resistance Genes (ARGs) in the Environment: Increasing Removal with Wetlands and Reducing Environmental Impacts. Bioresource Technology, 307: 123228. https://doi.org/10.1016/j.biortech.2020.123228
He, L. Y., He, L. K., Liu, Y. S., et al., 2019. Microbial Diversity and Antibiotic Resistome in Swine Farm Environments. The Science of the Total Environment, 685: 197-207. https://doi.org/10.1016/j.scitotenv.2019.05.369
Hu, A. Y., Wang, H. J., Li, J. W., et al., 2020. Homogeneous Selection Drives Antibiotic Resistome in Two Adjacent Sub-Watersheds, China. Journal of Hazardous Materials, 398: 122820. https://doi.org/10.1016/j.jhazmat.2020.122820
Huang, X. F., Luo, Y., Liu, Z. L., et al., 2019. Influence of Two-Stage Combinations of Constructed Wetlands on the Removal of Antibiotics, Antibiotic Resistance Genes and Nutrients from Goose Wastewater. International Journal of Environmental Research and Public Health, 16(20): 4030. https://doi.org/10.3390/ijerph16204030
Huang, X., Zheng, J. L., Liu, C. X., et al., 2017. Removal of Antibiotics and Resistance Genes from Swine Wastewater Using Vertical Flow Constructed Wetlands: Effect of Hydraulic Flow Direction and Substrate Type. Chemical Engineering Journal, 308: 692-699. https://doi.org/10.1016/j.cej.2016.09.110
Li, H., Cao, H. P., Li, T., et al., 2023. Biofilm Electrode Reactor Coupled Manganese Ore Substrate Up-Flow Microbial Fuel Cell-Constructed Wetland System: High Removal Efficiencies of Antibiotic, Zinc (II), and the Corresponding Antibiotic Resistance Genes. Journal of Hazardous Materials, 460: 132394. https://doi.org/10.1016/j.jhazmat.2023.132394
Li, H., Xu, H., Yang, Y. L., et al., 2019. Effects of Graphite and Mn Ore Media on Electro-Active Bacteria Enrichment and Fate of Antibiotic and Corresponding Resistance Gene in up Flow Microbial Fuel Cell Constructed Wetland. Water Research, 165: 114988. https://doi.org/10.1016/j.watres.2019.114988
Li, L. G., Huang, Q., Yin, X. L., et al., 2020. Source Tracking of Antibiotic Resistance Genes in the Environment: Challenges, Progress, and Prospects. Water Research, 185: 116127. https://doi.org/10.1016/j.watres.2020.116127
Li, X. Y., Wu, Y. Y., Jiang, T., et al., 2024. China’s Plan to Combat Antimicrobial Resistance. Science, 383(6690): 1424-1425. https://doi.org/10.1126/science.ado5186
Liu, L., Li, J., Xin, Y., et al., 2021. Evaluation of Wetland Substrates for Veterinary Antibiotics Pollution Control in Lab-Scale Systems. Environmental Pollution, 269: 116152. https://doi.org/10.1016/j.envpol.2020.116152
Liu, X. H., Chen, J., Liu, Y., et al., 2022. Sulfamethoxazole Degradation by Pseudomonas Silesiensis F6a Isolated from Bioelectrochemical Technology-Integrated Constructed Wetlands. Ecotoxicology and Environmental Safety, 240: 113698. https://doi.org/10.1016/j.ecoenv.2022.113698
Liu, Y., Hou, B., Chen, J. J., et al., 2021. The Influence of Domestication on the Diversity of Cathodic Microbial Community in Biocathode Microbial Fuel Cell. Microbiology China, 48(2): 373-382 (in Chinese with English abstract).
Makowska, N., Philips, A., Dabert, M., et al., 2020. Metagenomic Analysis of β-Lactamase and Carbapenemase Genes in the Wastewater Resistome. Water Research, 170: 115277. https://doi.org/10.1016/j.watres.2019.115277
McCorquodale-Bauer, K., Grosshans, R., Zvomuya, F., et al., 2023. Critical Review of Phytoremediation for the Removal of Antibiotics and Antibiotic Resistance Genes in Wastewater. The Science of the Total Environment, 870: 161876. https://doi.org/10.1016/j.scitotenv.2023.161876
Nõlvak, H., Truu, M., Tiirik, K., et al., 2013. Dynamics of Antibiotic Resistance Genes and Their Relationships with System Treatment Efficiency in a Horizontal Subsurface Flow Constructed Wetland. The Science of the Total Environment, 461-462: 636-644. https://doi.org/10.1016/j.scitotenv.2013.05.052
Ohore, O. E., Zhang, S. H., Guo, S. Z., et al., 2021. The Fate of Tetracycline in Vegetated Mesocosmic Wetlands and Its Impact on the Water Quality and Epiphytic Microbes. Journal of Hazardous Materials, 417: 126148. https://doi.org/10.1016/j.jhazmat.2021.126148
Perron, G. G., Whyte, L., Turnbaugh, P. J., et al., 2015. Functional Characterization of Bacteria Isolated from Ancient Arctic Soil Exposes Diverse Resistance Mechanisms to Modern Antibiotics. PLoS One, 10(3): e0069533. https://doi.org/10.1371/journal.pone.0069533
Pruden, A., Pei, R. T., Storteboom, H., et al., 2006. Antibiotic Resistance Genes as Emerging Contaminants: Studies in Northern Colorado. Environmental Science & Technology, 40(23): 7445-7450. https://doi.org/10.1021/es060413l
Shingare, R. P., Thawale, P. R., Raghunathan, K., et al., 2019. Constructed Wetland for Wastewater Reuse: Role and Efficiency in Removing Enteric Pathogens. Journal of Environmental Management, 246: 444-461. https://doi.org/10.1016/j.jenvman.2019.05.157
Song, H. L., Li, H., Zhang, S., et al., 2018. Fate of Sulfadiazine and Its Corresponding Resistance Genes in Up-Flow Microbial Fuel Cell Coupled Constructed Wetlands: Effects of Circuit Operation Mode and Hydraulic Retention Time. Chemical Engineering Journal, 350: 920-929. https://doi.org/10.1016/j.cej.2018.06.035
Wang, H. J., Hou, L. Y., Liu, Y. Q., et al., 2021. Horizontal and Vertical Gene Transfer Drive Sediment Antibiotic Resistome in an Urban Lagoon System. Journal of Environmental Sciences (China), 102: 11-23. https://doi.org/10.1016/j.jes.2020.09.004
Wang, Y., Han, Y. P., Li, L., et al., 2022. Distribution, Sources, and Potential Risks of Antibiotic Resistance Genes in Wastewater Treatment Plant: A Review. Environmental Pollution, 310: 119870. https://doi.org/10.1016/j.envpol.2022.119870
Wen, H. Y., Zhu, H., Yan, B. X., et al., 2022. High Removal Efficiencies of Antibiotics and Low Accumulation of Antibiotic Resistant Genes Obtained in Microbial Fuel Cell-Constructed Wetlands Intensified by Sponge Iron. The Science of the Total Environment, 806(Pt 1): 150220. https://doi.org/10.1016/j.scitotenv.2021.150220
Wendel, H. E. W., Downs, J. A., Mihelcic, J. R., 2011. Assessing Equitable Access to Urban Green Space: The Role of Engineered Water Infrastructure. Environmental Science & Technology, 45(16): 6728-6734. https://doi.org/10.1021/es103949f
Xue, H., Lin, H., Wang, Z., et al., 2023. Research Progress on Removing Antibiotic Resistance Genes in Constructed Wetlands. Environmental Science, 44(10): 5490-5497 (in Chinese with English abstract).
Yi, X. Z., Tran, N. H., Yin, T. R., et al., 2017. Removal of Selected PPCPS, EDCs, and Antibiotic Resistance Genes in Landfill Leachate by a Full-Scale Constructed Wetlands System. Water Research, 121: 46-60. https://doi.org/10.1016/j.watres.2017.05.008
Yu, G. L., Wang, G. L., Chi, T. Y., et al., 2022. Enhanced Removal of Heavy Metals and Metalloids by Constructed Wetlands: A Review of Approaches and Mechanisms. The Science of the Total Environment, 821: 153516. https://doi.org/10.1016/j.scitotenv.2022.153516
Yuan, T., Cheng, S., Lin, Z.B., et al., 2022. Effects of Adding Ferrous Iron on the Removal of Sulfonamide Antibiotic Resistance Genes in Constructed Wetlands. Water Saving Irrigation, (9): 114-123 (in Chinese with English abstract).
Yuan, T., Lin, Z. B., Cheng, S., et al., 2022. Removal of Sulfonamide Resistance Genes in Fishery Reclamation Mining Subsidence Area by Zeolite. International Journal of Environmental Research and Public Health, 19(7): 4281. https://doi.org/10.3390/ijerph19074281
Zhang, D. Y., 2022. Removal Efficiency of Emerging Contaminants in Water on Ore/Biochar-Amended Bioretention (Dissertation). Southeast University, Nanjing (in Chinese with English abstract).
Zhang, L., Yan, C. Z., Wen, C., et al., 2023. Influencing Factors of Antibiotic Resistance Genes Removal in Constructed Wetlands: A Meta-Analysis Assisted by Multivariate Statistical Methods. Chemosphere, 315: 137755. https://doi.org/10.1016/j.chemosphere.2023.137755
Zhang, S., Song, H. L., Yang, X. L., et al., 2018. A System Composed of a Biofilm Electrode Reactor and a Microbial Fuel Cell-Constructed Wetland Exhibited Efficient Sulfamethoxazole Removal but Induced Sul Genes. Bioresource Technology, 256: 224-231. https://doi.org/10.1016/j.biortech.2018.02.023
Zheng, D. S., Yin, G. Y., Liu, M., et al., 2022. Global Biogeography and Projection of Soil Antibiotic Resistance Genes. Science Advances, 8(46): eabq8015. https://doi.org/10.1126/sciadv.abq8015
Zhou, Y. T., Niu, L. L., Zhu, S. Y., et al., 2017. Occurrence, Abundance, and Distribution of Sulfonamide and Tetracycline Resistance Genes in Agricultural Soils across China. The Science of the Total Environment, 599/600: 1977-1983. https://doi.org/10.1016/j.scitotenv.2017.05.152

Comments

PDF(389 KB)

Accesses

Citation

Detail

Sections
Recommended

/