
Characterization of Minerals and Elements in Surface Soils from Mars-like Qaidam Landforms through Multi-Spectroscopic Techniques
Guo Xue, Shen Jianxun, Liu Li, Huang Chengxiang, Chen Yan, Lin Honglei, Lin Wei
Characterization of Minerals and Elements in Surface Soils from Mars-like Qaidam Landforms through Multi-Spectroscopic Techniques
The surface of Mars has been sculpted by a diversity of long-lasting aqueous systems and likely had a more habitable environment in the past. During recent decades, the ancient habitable environments and evolutionary history of Mars have been interesting topics of planetary science research and deep space exploration. The Qaidam Basin, located on the northeastern Tibetan Plateau, has been considered to be an ideal analog to ancient Mars due to its limited aqueous activity, coldness, aridity, and high UV radiation. This study combined remote sensing image analysis, short-wave infrared spectroscopy, laser-induced breakdown spectroscopy, X-ray diffraction, and X-ray fluorescence to analyze the spectral characteristics and mineral and elemental compositions of surface soils sampled from representative Mars-like landforms (including alluvial fan, dune, debris flow, gully, yardang, playa, and polygon) across the Qaidam Basin. Results of this study reveal that the mineral composition of Mars-like Qaidam landforms is primarily composed of quartz, albite, gypsum, and calcite, as well as illite, chlorite, microcline, and halite. Samples from the yardang and alluvial fan demonstrated their high preservation capacities of carbonates, clay minerals, and organic matter. These findings offer valuable insights for the interpretation of in-situ spectroscopic data and environmental chemical analyses of paleohydrologic settings on Mars from the perspective of comparative planetology.
Qaidam Basin / Mars-like landform / spectroscopy / geochemistry / paleohydrology
Abrams, M., 2000. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER): Data Products for the High Spatial Resolution Imager on NASA’s Terra Platform. International Journal of Remote Sensing, 21(5): 847-859. https://doi.org/10.1080/014311600210326
|
Amao, A. O., Al-Otaibi, B., Al-Ramadan, K., 2022. High-Resolution X-Ray Diffraction Datasets: Carbonates. Data Brief,42: 108204. https://doi.org/10.1016/j.dib.2022.108204
|
Anglés, A., Li, Y. L., 2017. The Western Qaidam Basin as a Potential Martian Environmental Analogue: An Overview. Journal of Geophysical Research: Planets,122(5): 856-888. https://doi.org/10.1002/2017je005293
|
Bishop, J. L., Pieters, C. M., Edwards, J. O., 1994. Infrared Spectroscopic Analyses on the Nature of Water in Montmorillonite. Clays and Clay Minerals,42(6): 702-716. https://doi.org/10.1346/ccmn.1994.0420606
|
Bosak, T., Moore, K. R., Gong, J., et al., 2021. Searching for Biosignatures in Sedimentary Rocks from Early Earth and Mars. Nature Reviews Earth & Environment,2(7): 490-506. https://doi.org/10.1038/s43017-021-00169-5
|
Cardenas, B. T., Stacey, K., 2023. Landforms Associated with the Aspect-Controlled Exhumation of Crater-Filling Alluvial Strata on Mars. Geophysical Research Letters,50(15): e2023GL103618. https://doi.org/10.1029/2023gl103618
|
Chen, K. Z., Bowler, J. M., 1986. Late Pleistocene Evolution of Salt Lakes in the Qaidam Basin, Qinghai Province, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 54(1-4): 87-104. https://doi.org/10.1016/0031-0182(86)90119-7
|
Chen, Q., Zhao, Z. F., Zhou, J. X., et al., 2022a. ASTER and GF-5 Satellite Data for Mapping Hydrothermal Alteration Minerals in the Longtoushan Pb-Zn Deposit, SW China. Remote Sensing, 14(5): 1253. https://doi.org/10.3390/rs14051253
|
Chen, Y., Shen, J.X., Liu, L., et al., 2022b. Preservation of Organic Matter in Aqueous Deposits and Soils across the Mars-Analog Qaidam Basin, NW China: Implications for Biosignature Detection on Mars. Journal of Geophysical Research: Planets,127(12): e2022JE007418. https://doi.org/https://doi.org/10.1029/2022JE007418
|
Chung, F. H., 1974. Quantitative Interpretation of X-Ray Diffraction Patterns of Mixtures. I. Matrix-Flushing Method for Quantitative Multicomponent Analysis. Journal of Applied Crystallography, 7(6): 519-525. https://doi.org/10.1107/s0021889874010375
|
Cloutis, E. A., Hawthorne, F. C., Mertzman, S. A., et al., 2006. Detection and Discrimination of Sulfate Minerals Using Reflectance Spectroscopy. Icarus,184(1): 121-157. https://doi.org/10.1016/j.icarus.2006.04.003
|
Crowley, J. K., 1991. Visible and Near-Infrared (0.4-2.5 μm) Reflectance Spectra of Playa Evaporite Minerals. Journal of Geophysical Research: Solid Earth,96(B10): 16231-16240. https://doi.org/10.1029/91jb01714
|
Crowley, J. K., Hook, S. J., 1996. Mapping Playa Evaporite Minerals and Associated Sediments in Death Valley, California, with Multispectral Thermal Infrared Images. Journal of Geophysical Research: Solid Earth,101(B1): 643-660. https://doi.org/10.1029/95jb02813
|
Cui, Z. C., Jia, L. C., Li, L. N., et al., 2022. A Laser-Induced Breakdown Spectroscopy Experiment Platform for High-Degree Simulation of MarSCoDe In Situ Detection on Mars. Remote Sensing, 14(9): 1954. https://doi.org/10.3390/rs14091954
|
Des Marais, D. J., Nuth, J. A. III, Allamandola, L. J., et al., 2008. The NASA Astrobiology Roadmap. Astrobiology, 8(4): 715-730. https://doi.org/10.1089/ast.2008.0819
|
Ehlmann, B. L., Edwards, C. S., 2014. Mineralogy of the Martian Surface. Annual Review of Earth and Planetary Sciences, 42: 291-315. https://doi.org/10.1146/annurev-earth-060313-055024
|
Gendrin, A., Mangold, N., Bibring, J. P., et al., 2005. Sulfates in Martian Layered Terrains: The OMEGA/Mars Express View. Science, 307(5715): 1587-1591. https://doi.org/10.1126/science.1109087
|
He, Z. P., Xu, R., Li, C. L., et al., 2021. Mars Mineralogical Spectrometer (MMS) on the Tianwen-1 Mission. Space Science Reviews, 217(2): 27. https://doi.org/10.1007/s11214-021-00804-z
|
Horneck, G., Walter, N., Westall, F., et al., 2016. AstRoMap European Astrobiology Roadmap. Astrobiology,16(3): 201-243. https://doi.org/10.1089/ast.2015.1441
|
Hu, B., Zhang, C. X., Wu, H. B., et al., 2019. Clay Mineralogy of an Eocene Fluvial-Lacustrine Sequence in Xining Basin, Northwest China, and Its Paleoclimatic Implications. Science China Earth Sciences, 62(3): 571-584. https://doi.org/10.1007/s11430-018-9282-8
|
Huang, Q., Han, F. Q., 2007. Salt Lake Evolution and Paleoclimate Fluctuation in Qaidam Basin. Science Press, Beijing (in Chinese).
|
Kong, F. J., Zheng, M. P., Hu, B., et al., 2018. Dalangtan Saline Playa in a Hyperarid Region on Tibet Plateau: I. Evolution and Environments. Astrobiology, 18(10): 1243-1253. https://doi.org/10.1089/ast.2018.1830
|
Langevin, Y., Poulet, F., Bibring, J. P., et al., 2005. Sulfates in the North Polar Region of Mars Detected by OMEGA/Mars Express. Science,307(5715): 1584-1586. https://doi.org/10.1126/science.1109091
|
Li, L.L., Dong, Z.B., Li, C., et al., 2018.Comparison of Yardang Morphology on the Earth and the Mars: Taking the Elysium Planitia and the Qaidam Basin for an Example. Journal of Desert Research, 38(4): 716-723 (in Chinese with English abstract).
|
Lin, H. L., Xu, R., Lin, Y. T., et al., 2023. In-Flight Calibration of Near-Infrared Reflectance Spectra Measured by the Zhurong Mars Rover. Earth and Space Science, 10(2): e2022EA002624. https://doi.org/10.1029/2022ea002624
|
Lin, W., Li, Y.L., Wang, G.H., et al., 2020. Overview and Perspectives of Astrobiology. Chinese Science Bulletin, 65(5): 380-391 (in Chinese).
|
Lin, W., Shen, J.X., Pan, Y.X., 2022. On Astrobiological Research in China. Earth Science, 47(11): 4108-4113 (in Chinese with English abstract).
|
Liu, C. Q., Ling, Z. C., Wu, Z. C., et al., 2022a. Aqueous Alteration of the Vastitas Borealis Formation at the Tianwen-1 Landing Site. Communications Earth & Environment, 3(1): 280. https://doi.org/10.1038/s43247-022-00614-3
|
Liu, Y., Wu, X., Zhao, Y. S., et al., 2022b. Zhurong Reveals Recent Aqueous Activities in Utopia Planitia, Mars. Science Advances,8(19): eabn8555. https://doi.org/10.1126/sciadv.abn8555
|
Liu, Z. Y., Li, L. N., Xu, W. M., et al., 2023. Investigation into the Affect of Chemometrics and Spectral Data Preprocessing Approaches upon Laser-Induced Breakdown Spectroscopy Quantification Accuracy Based on MarSCoDe Laboratory Model and MarSDEEP Equipment. Remote Sensing, 15(13): 3311. https://doi.org/10.3390/rs15133311
|
Martins, Z., Cottin, H., Kotler, J. M., et al., 2017. Earth as a Tool for Astrobiology—A European Perspective. Space Science Reviews, 209(1-4): 43-81. https://doi.org/10.1007/s11214-017-0369-1
|
McKeown, N. K., Bishop, J. L., Noe Dobrea, E. Z., et al., 2009. Characterization of Phyllosilicates Observed in the Central Mawrth Vallis Region, Mars, Their Potential Formational Processes, and Implications for Past Climate. Journal of Geophysical Research: Planets, 114(E2): E00D10. https://doi.org/10.1029/2008je003301
|
Ralchenko, Y., Kramida, A., 2020. Development of NIST Atomic Databases and Online Tools. Atoms, 8(3): 56. https://doi.org/10.3390/atoms8030056
|
Rieser, A. B., Bojar, A. V., Neubauer, F., et al., 2009. Monitoring Cenozoic Climate Evolution of Northeastern Tibet: Stable Isotope Constraints from the Western Qaidam Basin, China. International Journal of Earth Sciences, 98(5): 1063-1075. https://doi.org/10.1007/s00531-008-0304-5
|
Rohrmann, A., Heermance, R., Kapp, P., et al., 2013. Wind as the Primary Driver of Erosion in the Qaidam Basin, China. Earth and Planetary Science Letters, 374: 1-10. https://doi.org/10.1016/j.epsl.2013.03.011
|
Rotz, R., 2020. Geomorphic-Geologic Indicators of Zones of Hydrologic Flux in Drylands on Earth and Mars (Dissertation). University of Georgia, Georgia.
|
Shen, J., Zerkle, A. L., Stueeken, E., et al., 2019. Nitrates as a Potential N Supply for Microbial Ecosystems in a Hyperarid Mars Analog System. Life-Basel,9(4): E79. https://doi.org/10.3390/life9040079
|
Shen, J. X., Chen, Y., Sun, Y., et al., 2022. Detection of Biosignatures in Terrestrial Mars Analogs: Strategical and Technical Assessments. Earth and Planetary Physics, 6: 431-450. https://doi.org/10.26464/epp2022042
|
Singh, M., Sarkar, A., 2021. Laser Induced Breakdown Spectroscopic Measurements of Oxygen to Metal (O/M) Ratio in Metal Oxides Samples. Spectrochimica Acta Part B: Atomic Spectroscopy,179: 106106. https://doi.org/10.1016/j.sab.2021.106106
|
Sobron, P., Wang, A., Mayer, D. P., et al., 2018. Dalangtan Saline Playa in a Hyperarid Region of Tibet Plateau: III. Correlated Multiscale Surface Mineralogy and Geochemistry Survey. Astrobiology,18(10): 1277-1304. https://doi.org/10.1089/ast.2017.1777
|
Sun, Y., Li, Y. L., Zhang, C. Q., et al., 2022. Weathering of Chlorite Illite Deposits in the Hyperarid Qaidam Basin: Implications to Post-Depositional Alteration on Martian Clay Minerals. Frontiers in Astronomy and Space Sciences, 9: 875547. https://doi.org/10.3389/fspas.2022.875547
|
Viviano-Beck, C. E., Seelos, F. P., Murchie, S. L., et al., 2014. Revised Crism Spectral Parameters and Summary Products Based on the Currently Detected Mineral Diversity on Mars. Journal of Geophysical Research: Planets,119(6): 1403-1431. https://doi.org/10.1002/2014je004627
|
Wang, J., Wang, Y. J., Liu, Z. C., et al., 1999. Cenozoic Environmental Evolution of the Qaidam Basin and Its Implications for the Uplift of the Tibetan Plateau and the Drying of Central Asia. Palaeogeography, Palaeoclimatology, Palaeoecology, 152(1-2): 37-47. https://doi.org/10.1016/S0031-0182(99)00038-3
|
Wang, J., Xiao, L., Reiss, D., et al., 2018. Geological Features and Evolution of Yardangs in the Qaidam Basin, Tibetan Plateau (NW China): A Terrestrial Analogue for Mars. Journal of Geophysical Research: Planets, 123(9): 2336-2364. https://doi.org/10.1029/2018je005719
|
Wu, W.R., Wang, C., Liu, Y., et al., 2023. Frontier Scientific Questions in Deep Space Exploration. Chinese Science Bulletin, 68(6): 606-627 (in Chinese).
|
Xia, W. C., Zhang, N., Yuan, X. P., et al., 2001. Cenozoic Qaidam Basin, China: A Stronger Tectonic Inversed, Extensional Rifted Basin. AAPG Bulletin,85(4): 715-736. https://doi.org/https://doi.org/10.1306/8626C98D-173B-11D7-8645000102C1865D
|
Xiao, L., Huang, J., Kusky, T., et al., 2023. Evidence for Marine Sedimentary Rocks in Utopia Planitia: Zhurong Rover Observations. National Science Review,10(9): nwad137. https://doi.org/10.1093/nsr/nwad137
|
Xiao, L., Wang, J., Dang, Y.N., et al., 2017. A New Terrestrial Analogue Site for Mars Research: The Qaidam Basin, Tibetan Plateau (NW China). Earth-Science Reviews,164: 84-101. https://doi.org/10.1016/j.earscirev.2016.11.003
|
Xu, W. M., Liu, X. F., Yan, Z. X., et al., 2021. The MarSCoDe Instrument Suite on the Mars Rover of China’s Tianwen-1 Mission. Space Science Reviews,217(5): 1-58. https://doi.org/10.1007/s11214-021-00836-5
|
Xue, D. S., Su, B. X., Zhang, D. P., et al., 2020. Quantitative Verification of 1 : 100 Diluted Fused Glass Beads for X-Ray Fluorescence Analysis of Geological Specimens. Journal of Analytical Atomic Spectrometry, 35(12): 2826-2833. https://doi.org/10.1039/ d0ja00273a
|
Yin, A., Dang, Y. Q., Wang, L. C., et al., 2008. Cenozoic Tectonic Evolution of Qaidam Basin and Its Surrounding Regions (Part 1): The Southern Qilian Shan-Nan Shan Thrust Belt and Northern Qaidam Basin. Geological Society of America Bulletin, 120(7-8): 813-846. https://doi.org/10.1130/b26180.1
|
Yong, C. Z., Fang, Z. Y., Zhang, C. C., et al., 2023. Constraints on Water Activity at the Zhurong Landing Site in Utopia Planitia, Mars. Earth and Planetary Physics, 7(3): 356-370. https://doi.org/10.26464/epp2023036
|
Zhao, Y. S., Yu, J., Wei, G. F., et al., 2023. In Situ Analysis of Surface Composition and Meteorology at the Zhurong Landing Site on Mars. National Science Review, 10(6): nwad056. https://doi.org/10.1093/nsr/nwad056
|
感谢中国科学院大学杭州高等研究院许学森副研究员以及崔志成、刘子怡、贾良辰、吕文浩、沈佳庆、吴义健对LIBS实验的帮助.感谢中国科学院地质与地球物理研究所胡彬高级工程师对XRD实验的技术支持,感谢张丹萍高级实验师对XRF实验的技术支持!
/
〈 |
|
〉 |