
Effects of Two Different Strains of Sulfur Oxidizing Bacteria on Arsenic Migration and Transformation in Arsenopyrite
Zhang Jing, Kou Zhu, Qing Chun, Li Ping
Effects of Two Different Strains of Sulfur Oxidizing Bacteria on Arsenic Migration and Transformation in Arsenopyrite
The transformation of arsenic in hot springs is significantly affected by biotic sulfur oxidization. However, the effects of different types of sulfur-oxidizing microorganisms on arsenic transformation are still not well understood. In this study, it compared the effects of anthiosulfate-oxidized bacterium Anoxybacillus flavithermus DB-1 and anelemental sulfur-oxidized archaea Sulfolobus tengchong RT8-4 on arsenopyrite, a typical sulfur-arsenic-bearing mineral from hot springs. The results show that strain A. flavithermus DB-1 could oxidize 60% of As(Ⅲ) at an initial concentration of 0.1 mmol/L in two days, but not elemental sulfur at 50 ℃, pH 7.0-8.0. Strain S. tengchong RT8-4 was able to oxidize 54.3% of Fe(Ⅱ) at an initial concentration of 0.1 mmol/L within 8 days, but could not oxidize sulfur ions and arsenic under the conditions of pH 3.0 and 75 ℃. Co-culture of A. flavithermus DB-1 with arsenopyrite promoted the release of arsenic and sulfur, and the final concentration of arsenic released into the solution was 1.8 mmol/L, SO4 2- concentration was 10.4 mmol/L, and no secondary mineral was produced. With S. tengchong RT8-4, 12.8 mmol/L of arsenic, SO4 2- 87.7 mmol/L and 8.5 mmol/L Fe(Ⅲ) were released, and the secondary minerals such as jarosite, yavapaiite and scorodite were generated. These findings suggest that different sulfur-oxidizing microorganisms can affect arsenic migration and transformation in different ways in hot springs, which improves our understanding of arsenic and sulfur biogeochemistry in hot springs.
hot spring / sulfur-oxidizing microorganisms / arsenic migration and transformation / biogeology / geochemistry
Abbas, S. Z., Riaz, M., Ramzan, N., et al., 2015. Isolation and Characterization of Arsenic Resistant Bacteria from Wastewater. Brazilian Journal of Microbiology, 45(4): 1309-1315. https://doi.org/10.1590/s1517-83822014000400022
|
Amenabar, M. J., Boyd, E. S., 2018. Mechanisms of Mineral Substrate Acquisition in a Thermoacidophile. Applied and Environmental Microbiology, 84(12): e00334-18. https://doi.org/10.1128/AEM.00334-18
|
Baba, A., Uzelli, T., Sozbilir, H., 2021. Distribution of Geothermal Arsenic in Relation to Geothermal Play Types: A Global Review and Case Study from the Anatolian Plate (Turkey). Journal of Hazardous Materials, 414: 125510. https://doi.org/10.1016/j.jhazmat.2021.125510
|
Boughanemi, S., Infossi, P., Giudici-Orticoni, M. T., et al., 2020. Sulfite Oxidation by the Quinone-Reducing Molybdenum Sulfite Dehydrogenase SoeABC from the Bacterium Aquifex Aeolicus. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1861(11): 148279. https://doi.org/10.1016/j.bbabio.2020.148279
|
Brock, T. D., Brock, K. M., Belly, R. T., et al., 1972. Sulfolobus: A New Genus of Sulfur-Oxidizing Bacteria Living at Low pH and High Temperature. Archiv fur Mikrobiologie, 84(1): 54-68. https://doi.org/10.1007/BF00408082
|
Bundschuh, J., Maity, J. P., 2015. Geothermal Arsenic: Occurrence, Mobility and Environmental Implications. Renewable and Sustainable Energy Reviews, 42: 1214-1222. https://doi.org/10.1016/j.rser.2014.10.092
|
Castelán-Sánchez, H. G., Meza-Rodríguez, P. M., Carrillo, E., et al., 2020. The Microbial Composition in Circumneutral Thermal Springs from Chignahuapan, Puebla, Mexico Reveals the Presence of Particular Sulfur-Oxidizing Bacterial and Viral Communities. Microorganisms, 8(11): 1677. https://doi.org/10.3390/microorganisms8111677
|
Chen, J. S., Hussain, B., Tsai, H. C., et al., 2023. Analysis and Interpretation of Hot Springs Water, Biofilms, and Sediment Bacterial Community Profiling and Their Metabolic Potential in the Area of Taiwan Geothermal Ecosystem. Science of the Total Environment,856(1) : 159115. https://doi.org/10.1016/j.scitotenv.2022.159115
|
Chen, M. J., Zhang, Z. F., Hu, X. J., et al., 2022. Oxidation Mechanism of Arsenopyrite under Alkaline Conditions: Experimental and Theoretical Analyses. Journal of Cleaner Production, 358: 131987. https://doi.org/10.1016/j.jclepro.2022.131987
|
Dahl, C., 2015. Cytoplasmic Sulfur Trafficking in Sulfur- Oxidizing Prokaryotes. IUBMB Life, 67(4): 268-274. https://doi.org/10.1002/iub.1371
|
Descostes, M., Vitorge, P., Beaucaire, C., 2004. Pyrite Dissolution in Acidic Media. Geochimica et Cosmochimica Acta, 68(22): 4559-4569. https://doi.org/10.1016/j.gca.2004.04.012
|
Dou, L., Zhang, M. Y., Pan, L. Q., et al., 2022. Sulfide Removal Characteristics, Pathways and Potential Application of a Novel Chemolithotrophic Sulfide-Oxidizing Strain, Marinobacter sp. SDSWS8. Environmental Research, 212: 113176. https://doi.org/10.1016/j.envres.2022.113176
|
Edwards, K. J., Hu, B., Hamers, R. J., et al., 2001. A New Look at Microbial Leaching Patterns on Sulfide Minerals. FEMS Microbiology Ecology, 34(3): 197-206. https://doi.org/10.1016/S0168-6496(00)00094-5
|
Furukawa, T., Ueda, A., 2021. Tamagawa Hyper-Acidic Hot Spring and Phreatic Eruptions at Mt. Akita-Yakeyama: Part 1. The Isotopic and Chemical Characteristics of the Hot Spring Water. Journal of Volcanology and Geothermal Research, 412: 107179. https://doi.org/10.1016/j.jvolgeores.2021.107179
|
Guo, L., Wang, G. C., Sheng, Y. Z., et al., 2021. Hydrogeochemical Constraints Shape Hot Spring Microbial Community Compositions: Evidence from Acidic, Moderate Temperature Springs and Alkaline, High Temperature Springs, Southwestern Yunnan Geothermal Areas, China. Journal of Geophysical Research (Biogeosciences), 126(3): e2020JG005868. https://doi.org/10.1029/2020JG005868
|
Guo, Q. H., Planer-Friedrich, B., Liu, M. L., et al., 2017. Arsenic and Thioarsenic Species in the Hot Springs of the Rehai Magmatic Geothermal System, Tengchong Volcanic Region, China. Chemical Geology, 453: 12-20. https://doi.org/10.1016/j.chemgeo.2017.02.010
|
Jiang, Z., Li, P., Wang, Y. H., et al., 2014. Vertical Distribution of Bacterial Populations Associated with Arsenic Mobilization in Aquifer Sediments from the Hetao Plain, Inner Mongolia. Environmental Earth Sciences, 71(1): 311-318. https://doi.org/10.1007/s12665-013-2435-7
|
Kawano, M., Tomita, K., 2001. Geochemical Modeling of Bacterially Induced Mineralization of Schwertmannite and Jarosite in Sulfuric Acid Spring Water. American Mineralogist, 86(10): 1156-1165. https://doi.org/10.2138/am-2001-1005
|
Keller, N. S., Stefánsson, A., Sigfússon, B., 2014. Arsenic Speciation in Natural Sulfidic Geothermal Waters. Geochimica et Cosmochimica Acta, 142: 15-26. https://doi.org/10.1016/j.gca.2014.08.007
|
Kessler, D., 2006. Enzymatic Activation of Sulfur for Incorporation into Biomolecules in Prokaryotes. FEMS Microbiology Reviews, 30(6): 825-840. https://doi.org/10.1111/j.1574-6976.2006.00036.x
|
Klauber, C., 2008. A Critical Review of the Surface Chemistry of Acidic Ferric Sulphate Dissolution of Chalcopyrite with Regards to Hindered Dissolution. International Journal of Mineral Processing, 86(1-4): 1-17. https://doi.org/10.1016/j.minpro.2007.09.003
|
Kumarathilaka, P., Seneweera, S., Meharg, A., et al., 2018. Arsenic Speciation Dynamics in Paddy Rice Soil-Water Environment: Sources, Physico-Chemical, and Biological Factors: A Review. Water Research, 140: 403-414. https://doi.org/10.1016/j.watres.2018.04.034
|
Li, J. W., Peng, X. T., Zhang, L. X., et al., 2016. Linking Microbial Community Structure to S, N and Fe Biogeochemical Cycling in the Hot Springs at the Tengchong Geothermal Fields, Southwest China. Geomicrobiology Journal, 33(2): 135-150. https://doi.org/10.1080/01490451.2015.1043165
|
Luo, J. F., Tian, G. L., Lin, W. T., 2013. Enrichment, Isolation and Identification of Sulfur-Oxidizing Bacteria from Sulfide Removing Bioreactor. Journal of Environmental Sciences, 25(7): 1393-1399. https://doi.org/10.1016/S1001-0742(12)60179-X
|
Merkel, A. Y., Pimenov, N. V., Rusanov, I. I., et al., 2017. Microbial Diversity and Autotrophic Activity in Kamchatka Hot Springs. Extremophiles, 21(2): 307-317. https://doi.org/10.1007/s00792-016-0903-1
|
Nagar, S., Talwar, C., Motelica-Heino, M., et al., 2022. Microbial Ecology of Sulfur Biogeochemical Cycling at a Mesothermal Hot Spring Atop Northern Himalayas, India. Frontiers in Microbiology, 13: 848010. https://doi.org/10.3389/fmicb.2022.848010
|
Nordstrom, D. K., Ball, J. W., McCleskey, R. B., 2005. Ground Water to Surface Water: Chemistry of Thermal Outflows in Yellowstone National Park. In: Inskeep, W.P., McDermott, T.R., eds., Geothermal Biology and Geochemistry in Yellowstone National Park. Montana State University Publications, Bozeman, 73- 94.
|
Oremland, R. S., Stolz, J. F., 2003. The Ecology of Arsenic. Science, 300(5621): 939-944. https://doi.org/10.1126/science.1081903
|
Pascua, C., Sato, T., Golla, G., 2010. Mineralogical and Geochemical Constraints on Arsenic Mobility in a Philippine Geothermal Field. Acta Geologica Sinica, 80(2): 330-335. https://doi.org/10.1111/j.1755-6724.2006.tb00250.x
|
Qing, C., Nicol, A., Li, P., et al., 2023. Different Sulfide to Arsenic Ratios Driving Arsenic Speciation and Microbial Community Interactions in Two Alkaline Hot Springs. Environmental Research, 218: 115033. https://doi.org/10.1016/j.envres.2022.115033
|
Regenspurg, S., Brand, A., Peiffer, S., 2004. Formation and Stability of Schwertmannite in Acidic Mining Lakes. Geochimica et Cosmochimica Acta, 68(6): 1185-1197. https://doi.org/10.1016/j.gca.2003.07.015
|
Reis, V., Duarte, A. C., 2019. Occurrence, Distribution, and Significance of Arsenic Speciation. Arsenic Speciation in Algae. Elsevier, Amsterdam, 1-14. https://doi.org/10.1016/bs.coac.2019.03.006
|
Seo, E. Y., Cheong, Y. W., Yim, G. J., et al., 2017. Recovery of Fe, Al and Mn in Acid Coal Mine Drainage by Sequential Selective Precipitation with Control of pH. CATENA, 148: 11-16. https://doi.org/10.1016/j.catena.2016.07.022
|
Shi, W. J., Song, W. J., Zheng, J. L., et al., 2021. Factors and Pathways Regulating the Release and Transformation of Arsenic Mediated by Reduction Processes of Dissimilated Iron and Sulfate. Science of the Total Environment, 768: 144697. https://doi.org/10.1016/j.scitotenv.2020.144697
|
Tao, X. U., Liao, M. T., Yin, Z. G., 2015. A Study of Surface Mechanism of Arsenopyrite in Alkaline Solution. Acta Petrologica et Mineralogica, 34(6):821-826. https://doi.org/10.1016/j.jclepro.2022.131987
|
Ullrich, M. K., Pope, J. G., Seward, T. M., et al., 2013. Sulfur Redox Chemistry Governs Diurnal Antimony and Arsenic Cycles at Champagne Pool, Waiotapu, New Zealand. Journal of Volcanology and Geothermal Research, 262: 164-177. https://doi.org/10.1016/j.jvolgeores.2013.07.007
|
Viollier, E., Inglett, P. W., Hunter, K., et al., 2000. The Ferrozine Method Revisited: Fe(II)/Fe(III) Determination in Natural Waters. Applied Geochemistry, 15(6): 785-790. https://doi.org/10.1016/S0883-2927(99)00097-9
|
Wang, H. Y., Göttlicher, J., Byrne, J. M., et al., 2021. Vertical Redox Zones of Fe-S-As Coupled Mineralogy in the Sediments of Hetao Basin- Constraints for Groundwater as Contamination. Journal of Hazardous Materials, 408: 124924. https://doi.org/10.1016/j.jhazmat.2020.124924
|
Wang, R., Lin, J. Q., Liu, X. M., et al., 2019. Sulfur Oxidation in the Acidophilic Autotrophic Acidithiobacillus Spp. Frontiers in Microbiology, 9: 3290. https://doi.org/10.3389/fmicb.2018.03290
|
Wang, Y., Zhang, P. W., Wang, S. F., et al., 2022. Chemical Behaviors of Different Arsenic-Bearing Sulphides Bio-Oxidated by Thermophilic Bacteria. Transactions of Nonferrous Metals Society of China, 15(3): 648-652.
|
Wang, Y. X., Li, P., Guo, Q. H., et al., 2018. Environmental Biogeochemistry of High Arsenic Geothermal Fluids. Applied Geochemistry, 97: 81-92. https://doi.org/10.1016/j.apgeochem.2018.07.015
|
Wiertz, J. V., Mateo, M., Escobar, B., 2006. Mechanism of Pyrite Catalysis of As(III) Oxidation in Bioleaching Solutions at 30 ℃ and 70 ℃. Hydrometallurgy, 83(1-4): 35-39. https://doi.org/10.1016/j.hydromet.2006.03.035
|
Xiang, X., Dong, X., Huang, L., 2003. Sulfolobus Tengchongensis Sp. Nov., a Novel Thermoacidophilic Archaeon Isolated from a Hot Spring in Tengchong, China. Extremophiles, 7(6): 493-498. https://doi.org/10.1007/s00792-003-0355-2
|
Yang, H. Y., Gong, Y. P., et al., 2005. Chemical Behaviors of Different Arsenic-Bearing Sulphides Bio- Oxidated by Thermophilic Bacteria. Transactions of Nonferrous Metals Society of China, 15(3):5.
|
Yin, Z. P., Ye, L., Jing, C. Y., 2022. Genome-Resolved Metagenomics and Metatranscriptomics Reveal That Aquificae Dominates Arsenate Reduction in Tengchong Geothermal Springs. Environmental Science & Technology, 56(22): 16473-16482. https://doi.org/10.1021/acs.est.2c05764
|
Yu, Y. M., Zhu, Y. X., Williams-Jones, A. E., et al., 2004. A Kinetic Study of the Oxidation of Arsenopyrite in Acidic Solutions: Implications for the Environment. Applied Geochemistry, 19(3): 435-444. https://doi.org/10.1016/S0883-2927(03)00133-1
|
Zhang, D. R., Xia, J. L., Nie, Z. Y., et al., 2019. Mechanism by Which Ferric Iron Promotes the Bioleaching of Arsenopyrite by the Moderate Thermophile Sulfobacillus Thermosulfidooxidans. Process Biochemistry, 81: 11-21. https://doi.org/10.1016/j.procbio.2019.03.004
|
Zhang, G. J., Chao, X. W., Guo, P., et al., 2015. Catalytic Effect of Ag+ on Arsenic Bioleaching from Orpiment (As2S3) in Batch Tests with Acidithiobacillus Ferrooxidans and Sulfobacillus Sibiricus. Journal of Hazardous Materials, 283: 117-122. https://doi.org/10.1016/j.jhazmat.2014.09.022
|
Zhu, T., Lu, X., Liu, H., et al., 2014. Quantitative X-Ray Photoelectron Spectroscopy-Based Depth Profiling of Bioleached Arsenopyrite Surface by Acidithiobacillus ferrooxidans. Geochimica et Cosmochimica Acta, 127: 120-139. https://doi.org/10.1016/j.gca.2013.11.025
|
感谢中国科学研究院微生物研究所黄力研究员为本研究提供菌株!
/
〈 |
|
〉 |