Core Complex and Detachment Structure in the Kaiping Sag, Pearl River Mouth Basin and a Discussion on the Dynamics

Peng Guangrong, Zhang Lili, Xu Xinming, He Jinhai, Jiang Dapeng, Ye Qing

PDF(12155 KB)
PDF(12155 KB)
Earth Science ›› 2024, Vol. 49 ›› Issue (09) : 3306-3317. DOI: 10.3799/dqkx.2023.151

Core Complex and Detachment Structure in the Kaiping Sag, Pearl River Mouth Basin and a Discussion on the Dynamics

Author information +
History +

Abstract

The Kaiping sag within the Pearl River Mouth basin, northern South China Sea rifted margin, shows a complex rift structure, and the rift structure and dynamics are the main factors that hinder our understanding on the petroleum geology and exploration process in this area. Based on the newly acquired 3D seismic reflection data, this study investigates the structure of the Kaiping sag, the geometric and kinematic characteristics of boundary faults, and the deep lithospheric structure. It is revealed that the Kaiping sag has a detachment structure related to core complex, and the E-W extending dome structure in the central part of the Kaiping sag is a standard oceanic core complex structure. The development of the core complex is related to the uplift of the ductile crust, which is exposed and truncated at the KP9 high. The detachment in the context of core complex uplifting controls the structural styles and sedimentary filling process in the Kaiping sag. The development of the Kaiping core complex shows a standard rolling-hinge model, and the domed layered seismic reflectors within the crust represent the brittle-ductile transition surface in geological history, which has a direction of migration same with the hanging-wall movement. The main detachment fault shows “spoon-shaped”, and a large number of SN-trending corrugations on the detachment surface indicate top down to the south slip of the hanging wall. The development of oceanic core complexes in the Kaiping sag is closely related to the existence of a weak middle crust layer within the initial lithosphere in this area. This research offers a new explanation on the rift structure and dynamics of the Kaiping sag, which has promoted the understanding on source rocks and hydrocarbon accumulation and provided important guidance for the first commercial exploration breakthrough in forty years.

Key words

core complex / South China Sea / Pearl River Mouth basin / Kaiping sag / rift structure / petroleum geology / geodynamics

Cite this article

Download Citations
Peng Guangrong , Zhang Lili , Xu Xinming , et al . Core Complex and Detachment Structure in the Kaiping Sag, Pearl River Mouth Basin and a Discussion on the Dynamics. Earth Science. 2024, 49(09): 3306-3317 https://doi.org/10.3799/dqkx.2023.151

References

Arca, M. S., Kapp, P., Johnson, R. A., 2010. Cenozoic Crustal Extension in Southeastern Arizona and Implications for Models of Core-Complex Development. Tectonophysics, 488(1-4): 174-190. https://doi.org/10.1016/j.tecto.2010.03.021
Brun, J. P., Gutscher, M. A., Teams, D. E., 1992. Deep Crustal Structure of the Rhine Graben from DEKORP-ECORS Seismic Reflection Data: A Summary. Tectonophysics, 208(1): 139-147. https://doi.org/10.1016/0040-1951(92)90340-C
Brun, J. P., Sokoutis, D., Tirel, C., et al., 2018. Crustal Versus Mantle Core Complexes. Tectonophysics, 746: 22-45. https://doi.org/10.1016/j.tecto.2017.09.017
Carcione, J. M., Poletto, F., 2013. Seismic Rheological Model and Reflection Coefficients of the Brittle–Ductile Transition. Pure and Applied Geophysics, 170(12): 2021-2035. https://doi.org/10.1007/s00024-013-0643-4
Coney, P. J., Harms, T. A., 1984. Cordilleran Metamorphic Core Complexes: Cenozoic Extensional Relics of Mesozoic Compression. Geology, 12(9): 550-554. https://doi.org/10.1130/0091-7613(1984)12550: cmccce>2.0.co;2
Davis, G. H., Coney, P. J., 1979. Geologic Development of the Cordilleran Metamorphic Core Complexes. Geology, 7(3): 120-124. https://doi.org/10.1130/0091-7613(1979)7<120: GDOTCM>2.0.CO;2
Deng, H. D., Ren, J. Y., Pang, X., et al., 2020. South China Sea Documents the Transition from Wide Continental Rift to Continental Break up. Nature Communications, 11: 4583. https://doi.org/10.1038/s41467-020-18448-y
Deng, P., 2018. The Nature and Tectonic Transition of the Multiphase Rifting in the Northern Margin of the South China Sea: Base on the Study of the Zhu I Depression in Pearl River Mouth Basin (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
Escartín, J., Mével, C., Petersen, S., et al., 2017. Tectonic Structure, Evolution, and the Nature of Oceanic Core Complexes and Their Detachment Fault Zones (13°20’N and 13°30’N, Mid Atlantic Ridge). Geochemistry, Geophysics, Geosystems, 18(4): 1451-1482. https://doi.org/10.1002/2016gc006775
Fossen, H., 2010. Structural Geology. Cambridge University Press, Cambridge. https://doi.org/10.1017/cbo9780511777806
Huang, H. B., Klingelhoefer, F., Qiu, X. L., et al., 2021. Seismic Imaging of an Intracrustal Deformation in the Northwestern Margin of the South China Sea: The Role of a Ductile Layer in the Crust. Tectonics, 40(2): e2020TC006260. https://doi.org/10.1029/2020TC006260
Ji, M., Hu, L., Liu, J.L., et al., 2008.Features and Mechanism of Corrugation Structure in the Liaonan (Southern Liaoning) Metamorphic Core Complex. Chinese Journal of Geology, 43(1): 12-22 (in Chinese with English abstract).
Klemperer, S. L., 1987. A Relation Between Continental Heat Flow and the Seismic Reflectivity of the Lower Crust. Journal of Geophysics-Zeitschrift Fur Geophysik, 61(1): 1–11.
Li, L., Wang, B., Lei, C., et al., 2021. Tectonic Framework in the Xisha Area and Its Differential Evolution. Earth Science, 46(9): 3321-3337 (in Chinese with English abstract).
Li, S. Z., Lü, H. Q., Hou, F. H., et al., 2006.Oceanic Core Complex. Marine Geology & Quaternary Geology, 26(1): 47-52 (in Chinese with English abstract).
Liotta, D., Ranalli, G., 1999. Correlation between Seismic Reflectivity and Rheology in Extended Lithosphere: Southern Tuscany, Inner Northern Apennines, Italy. Tectonophysics, 315(1-4): 109-122. https://doi.org/10.1016/s0040-1951(99)00292-9
Lister, G. S., Davis, G. A., 1989. The Origin of Metamorphic Core Complexes and Detachment Faults Formed during Tertiary Continental Extension in the Northern Colorado River Region, U.S.A. Journal of Structural Geology, 11(1-2): 65-94. https://doi.org/10.1016/0191-8141(89)90036-9
Little, T. A., Webber, S. M., Mizera, M., et al., 2019. Evolution of a Rapidly Slipping, Active Low-Angle Normal Fault, Suckling-Dayman Metamorphic Core Complex, SE Papua New Guinea. GSA Bulletin, 131(7-8): 1333-1363. https://doi.org/10.1130/b35051.1
Liu, D. M., 2003. Review of the Basic Characteristics of the Metamorphic Core Complexs in China. Geoscience, 17(2): 125-130 (in Chinese with English abstract).
Malavieille, J., 1993. Late Orogenic Extension in Mountain Belts: Insights from the Basin and Range and the Late Paleozoic Variscan Belt. Tectonics, 12(5): 1115-1130. https://doi.org/10.1029/93tc01129
Mizera, M., Little, T. A., Biemiller, J., et al., 2019. Structural and Geomorphic Evidence for Rolling-Hinge Style Deformation of an Active Continental Low-Angle Normal Fault, SE Papua New Guinea. Tectonics, 38(5): 1556-1583. https://doi.org/10.1029/2018tc005167
Parnell-Turner, R., Escartín, J., Olive, J. A., et al., 2018. Genesis of Corrugated Fault Surfaces by Strain Localization Recorded at Oceanic Detachments. Earth and Planetary Science Letters, 498: 116-128. https://doi.org/10.1016/j.epsl.2018.06.034
Platt, J. P., Behr, W. M., Cooper, F. J., 2015. Metamorphic Core Complexes: Windows into the Mechanics and Rheology of the Crust. Journal of the Geological Society, 172(1): 9-27. https://doi.org/10.1144/jgs2014-036
Ren, J. Y., Luo, P., Gao, Y. Y., et al., 2022. Structural, Sedimentary and Magmatic Records during Continental Breakup at Southwest Sub-Basin of South China Sea. Earth Science, 47(7): 2287-2302 (in Chinese with English abstract).
Ring, U., 2014. Metamorphic Core Complexes. In: Harff, J., Meschede, M., Petersen, S., et al., eds., Encyclopedia of Marine Geosciences. Springer Netherlands, Dordrecht. https://doi.org/10.1007/978-94-007-6644-0_104-4
Seyfert, C. K., 1987. Cordilleran Metamorphic Core Complexes. In: Seyfert, C. K., ed., Encyclopedia of Structural Geology and Plate Tectonics. Van Nortrand Reinhold Company, New York, 113-130.
Shi, H. S., Du, J. Y., Mei, L. F., et al., 2020.Huizhou Movement and Its Significance in Pearl River Mouth Basin, China. Petroleum Exploration and Development, 47(3): 447-461 (in Chinese with English abstract).
Tirel, C., Brun, J. P., Burov, E., 2008. Dynamics and Structural Development of Metamorphic Core Complexes. Journal of Geophysical Research: Solid Earth, 113(B4): B04403. https://doi.org/10.1029/2005jb003694
Wang, J., Luan, X. W., He, B. S., et al., 2021. Characteristics and Genesis of Faults in Southwestern Pearl River Mouth Basin, Northern South China Sea. Earth Science, 46(3): 916-928 (in Chinese with English abstract).
Wang, X. S., Zheng, Y. D., Zhang, J. J., et al., 2002. Extensional Kinematics and Shear Type of the Hohhot Metamorphic Core Complex, Inner Mongolia. Geological Bulletin of China, 21(4-5): 238-245 (in Chinese with English abstract).
Webber, S., Little, T. A., Norton, K. P., et al., 2020. Progressive Back-Warping of a Rider Block Atop an Actively Exhuming, Continental Low-Angle Normal Fault. Journal of Structural Geology, 130: 103906. https://doi.org/10.1016/j.jsg.2019.103906
Whitney, D. L., Teyssier, C., Rey, P., et al., 2013. Continental and Oceanic Core Complexes. Geological Society of America Bulletin, 125(3-4): 273-298. https://doi.org/10.1130/b30754.1
Yang, B. F., Xiong, C., Cao, J. H., et al., 2020.Constrains of Sliding Wave Phases on the Low-Velocity Layer in the Pearl River Estuary. Journal of Tropical Oceanography, 39(1): 106-119 (in Chinese with English abstract).
Ye, Q., Mei, L. F., Shi, H. S., et al., 2018. The Late Cretaceous Tectonic Evolution of the South China Sea Area: An Overview, and New Perspectives from 3D Seismic Reflection Data. Earth Science Reviews, 187: 186-204. https://doi.org/10.1016/j.earscirev.2018.09.013
Ye, Q., Mei, L. F., Shi, H. S., et al., 2020. The Influence of Pre-Existing Basement Faults on the Cenozoic Structure and Evolution of the Proximal Domain, Northern South China Sea Rifted Margin. Tectonics, 39(3): e2019TC005845. https://doi.org/10.1029/2019TC005845
Zhao, M. H., Qiu, X. L., Xu, H. L., 2007. The Distribution and Identification of Low-Velocity Layer within the Sedimentary Layer and Crust in the Northern South China Sea. Progress in Natural Science, 17(4): 471-479 (in Chinese).
Zheng, Y., Wang, Y., Liu, R., et al., 1988. Sliding-Thrusting Tectonics Caused by Thermal Uplift in the Yunmeng Mountains, Beijing, China. Journal of Structural Geology, 10(2): 135-144. https://doi.org/10.1016/0191-8141(88)90111-3
Zheng, J. Y., Gao, Y. D., Zhang, X. T., et al., 2022.Tectonic Evolution Cycles and Cenozoic Sedimentary Environment Changes in Pearl River Mouth Basin. Earth Science, 47(7): 2374-2390 (in Chinese with English abstract).
Zheng, Y. D., 1999. Kinematic Vorticity Number and Shear Type Related to the Yagan Metamorphic Core Complex on Sino-Mongolian Border. Chinese Journal of Geology, 34(3): 273-280 (in Chinese with English abstract).
Zheng, Y. D., Zhang, Q., 1993. The Yagan Metamorphic Core Complex and Extensional Detachment Fault in Inner Mongolia. Acta Geologica Sinica, 67(4): 301-309 (in Chinese with English abstract).
Zhou, P. X., Xia, S. H., Hetényi, G., et al., 2020. Seismic Imaging of a Mid-Crustal Low-Velocity Layer Beneath the Northern Coast of the South China Sea and Its Tectonic Implications. Physics of the Earth and Planetary Interiors, 308: 106573. https://doi.org/10.1016/j.pepi.2020.106573
Zhou, Z. C., Mei, L. F., Liu, J., et al., 2018. Continentward-Dipping Detachment Fault System and Asymmetric Rift Structure of the Baiyun Sag, Northern South China Sea. Tectonophysics, 726: 121-136. https://doi.org/10.1016/j.tecto.2018.02.002

Comments

PDF(12155 KB)

Accesses

Citation

Detail

Sections
Recommended

/