Spatial Distribution of Seismic Moment Deficit in Xianshuihe Fault Zone and the 2022 Luding M 6.8 Earthquake

Yin Li, Zhou Bengang, Ren Zhikun, Luo Gang

PDF(4722 KB)
PDF(4722 KB)
Earth Science ›› 2024, Vol. 49 ›› Issue (02) : 425-436. DOI: 10.3799/dqkx.2023.138

Spatial Distribution of Seismic Moment Deficit in Xianshuihe Fault Zone and the 2022 Luding M 6.8 Earthquake

Author information +
History +

Abstract

On September 5, 2022, an M6.8 earthquake located at the Moxi fault at the southern end of the Xianshuihe fault zone. The seismogenic mechanism of this earthquake and whether large earthquakes will occur in this fault section in the near future are scientific issues worth attention. This paper attempts to explain the seismogenic mechanism of the earthquake and the potential seismogenic potential of the Xianshuihe fault zone in the future from the perspective of the accumulation and release of seismic energy. By comparing the temporal and spatial distribution of seismic moment accumulation and release, it is found that earthquakes mostly occur in the period of seismic moment deficit, and there is a tendency to fill the moment deficit. In addition, there are three significant moment deficit segments in Xianshuihe fault zone. All of these moment deficit fault segments have the potential to produce earthquakes of magnitude 6.5 or greater. After the 1786 Kangding M 7.6 earthquake, the accumulation of 200 years is enough to produce an earthquake of M 6.5 or above. The Luding M 6.8 earthquake only released a small part of the moment deficit on the Moxi fault, and there is still a possibility of a major earthquake on this fault section in the future.

Key words

moment deficit / Xianshuihe fault zone / Luding M 6.8 earthquake / seismic hazard assessment

Cite this article

Download Citations
Yin Li , Zhou Bengang , Ren Zhikun , et al. Spatial Distribution of Seismic Moment Deficit in Xianshuihe Fault Zone and the 2022 Luding M 6.8 Earthquake. Earth Science. 2024, 49(02): 425-436 https://doi.org/10.3799/dqkx.2023.138

References

Allen, C. R., Luo, Z. L., Qian, H., et al., 1991. Field Study of a Highly Active Fault Zone: The Xianshuihe Fault of Southwestern China. Geological Society of America Bulletin, 103(9): 1178-1199. https://doi.org/10.1130/0016-7606(1991)103<1178:fsoaha>2.3.co;2
Cheng, J., Rong, Y. F., Magistrale, H., et al., 2017. An Mw‐Based Historical Earthquake Catalog for Mainland China. Bulletin of the Seismological Society of America, 107(5): 2490-2500. https://doi.org/10.1785/0120170102
Chousianitis, K., Ganas, A., Evangelidis, C. P., 2015. Strain and Rotation Rate Patterns of Mainland Greece from Continuous GPS Data and Comparison between Seismic and Geodetic Moment Release. Journal of Geophysical Research: Solid Earth, 120(5): 3909-3931. https://doi.org/10.1002/2014jb011762
D'Agostino, N., 2014. Complete Seismic Release of Tectonic Strain and Earthquake Recurrence in the Apennines (Italy). Geophysical Research Letters, 41(4): 1155-1162. https://doi.org/10.1002/2014gl059230
Hanks, T. C., Kanamori, H., 1979. A Moment Magnitude Scale, Journal of Geophysical Research, 84(NB5): 2348-2350. https://doi.org/10.1029/JB084iB05p02348.
Kostrov, B. V.,1974. Seismic Moment and Energy of Earthquakes, and Seismic Flow of Rock Izv. Acad. Sci. Ussr Phys. Solid Earth, 1:23-44.
Li, Y. X., Bürgmann, R., 2021. Partial Coupling and Earthquake Potential along the Xianshuihe Fault, China. Journal of Geophysical Research: Solid Earth, 126(7): 1-5. https://doi.org/10.1029/2020jb021406
Malservisi, R., Gans, C., Furlong, K. P., 2003. Numerical Modeling of Strike-Slip Creeping Faults and Implications for the Hayward Fault, California. Tectonophysics, 361(1/2): 121-137. https://doi.org/10.1016/s0040-1951(02)00587-5
Meade, B. J., 2002. Estimates of Seismic Potential in the Marmara Sea Region from Block Models of Secular Deformation Constrained by Global Positioning System Measurements. Bulletin of the Seismological Society of America, 92(1): 208-215. https://doi.org/10.1785/0120000837
Min, Z., Wu, G., Jiang, Z., et al., 1995. The Catalogue of Chinese Historical Strong Earthquakes (B.C. 2300-A.D. 1911). Seismological Publishing House, Beijing (in Chinese).
Ojo, A. O., Kao, H., Jiang, Y., et al., 2021. Strain Accumulation and Release Rate in Canada: Implications for Long-Term Crustal Deformation and Earthquake Hazards. Journal of Geophysical Research: Solid Earth, 126(4): 1-16. https://doi.org/10.1029/2020jb020529
Qiao, X., Zhou, Y., 2021. Geodetic Imaging of Shallow Creep along the Xianshuihe Fault and its Frictional Properties. Earth and Planetary Science Letters, 567(2): 117001. https://doi.org/10.1016/j.epsl.2021.117001
Reid, H. F.,1910. The California Earthquake of April 18, 1906. Volume II. The Mechanics of the Earthquake.Carnegie Institution of Washington, Washington, D. C.
Shen, Z. K., Lü, J. N., Wang, M., et al., 2005. Contemporary Crustal Deformation around the Southeast Borderland of the Tibetan Plateau. Journal of Geophysical Research: Solid Earth, 110(B11): 5-20. https://doi.org/10.1029/2004jb003421
Shen, Z. K., Wang, M., Zeng, Y. H., et al., 2015. Optimal Interpolation of Spatially Discretized Geodetic Data. Bulletin of the Seismological Society of America, 105(4): 2117-2127. https://doi.org/10.1785/0120140247
Sparacino, F., Palano, M., Peláez, J. A., et al., 2020. Geodetic Deformation Versus Seismic Crustal Moment-Rates: Insights from the Ibero-Maghrebian Region. Remote Sensing, 12(6): 952. https://doi.org/10.3390/rs12060952
Tape, C., Musé, P., Simons, M., et al., 2009. Multiscale Estimation of GPS Velocity Fields. Geophysical Journal International, 179(2): 945-971. https://doi.org/10.1111/j.1365-246x.2009.04337.x
Tapponnier, P., Xu, Z. Q., Roger, F., et al., 2001. Oblique Stepwise Rise and Growth of the Tibet Plateau. Science, 294(5547): 1671-1677. https://doi.org/10.1126/science. 105978
Wang, S., Wu, G., Shi, Z., 1999. The Catalogue of Recent Earthquakes in China (A.D. 1912-A.D. 1990), China Science and Technology Publishing House, Beijing, China ( inChinese ).
Wang, H., Liu, M., Cao, J. L., et al., 2011. Slip Rates and Seismic Moment Deficits on Major Active Faults in Mainland China. Journal of Geophysical Research, 116(B2): 255-263. https://doi.org/10.1029/2010jb007821
Wang, H., Liu, M., Shen, X. H., et al., 2010. Balance of Seismic Moment in the Songpan-Ganze Region, Eastern Tibet: Implications for the 2008 Great Wenchuan Earthquake. Tectonophysics, 491(1/2/3/4): 154-164. https://doi.org/10.1016/j.tecto.2009.09.022
Wang, M., Shen, Z. K., 2020. Present‐Day Crustal Deformation of Continental China Derived from GPS and its Tectonic Implications. Journal of Geophysical Research: Solid Earth, 125(2): 125-139. https://doi.org/10.1029/2019jb018774
Wang, W., Qiao, X. J., Yang, S. M., et al., 2017. Present-Day Velocity Field and Block Kinematics of Tibetan Plateau from GPS Measurements. Geophysical Journal International, 208(2): 1088-1102. https://doi.org/10.1093/gji/ggw445
Ward, S. N., 1998. On the Consistency of Earthquake Moment Rates, Geological Fault Data, and Space Geodetic Strain: The United States. Geophysical Journal International, 134(1): 172-186. https://doi.org/10.1046/j.1365-246x. 1998.00556.x
Wells, D. L., Coppersmith, K. J., 1994. New Empirical Relationships among Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface Displacement. Bulletin of the Seismological Society of America, 84(4): 974-1002. https://doi.org/10.1785/bssa0840040974
Wen, X. Z., Ma, S. L., Xu, X. W., et al., 2008. Historical Pattern and Behavior of Earthquake Ruptures along the Eastern Boundary of the Sichuan-Yunnan Faulted-Block, Southwestern China. Physics of the Earth and Planetary Interiors, 168(1/2): 16-36. https://doi.org/10.1016/j.pepi.2008.04.013
Wesson, R. L.,1988. Dynamics of Fault Creep. J. Geophys. Res., 93(B8):8929-8951, https://doi.org/https://doi.org/10.1029/JB093iB08p08929.
Wiemer, S., 2001. A Software Package to Analyze Seismicity: ZMAP. Seismological Research Letters, 72(3): 373-382. https://doi.org/10.1785/gssrl.72.3.373
Xu, X. W., Wen, X. Z., Zheng, R. Z., et al., 2003. Pattern of Latest Tectonic Motion and its Dynamics for Active Blocks in Sichuan-Yunnan Region, China. Science in China Series D Earth Sciences, 46(S2): 210-226(in Chinese with English abstract).
Yi, G., Long, F., Wen, X., et al., 2015. Seismogenic Structure of the M 6.3 Kangding Earthquake Sequence on 22 Nov. 2014, Southwestern China, Chinese Journal of Geophysics-Chinese Edition, 58(4): 1205-1219 (in Chinese with English abstract).
Zhang, P. Z., 2013. A Review on Active Tectonics and Deep Crustal Processes of the Western Sichuan Region, Eastern Margin of the Tibetan Plateau. Tectonophysics, 584(B2): 7-22. https://doi.org/10.1016/j.tecto.2012.02.021
Zhao, G. Q., Meng, G. J., Wu, W. W., et al., 2021. Earthquake Potential Assessment around the Southeastern Tibetan Plateau Based on Seismic and Geodetic Data. Pure and Applied Geophysics, 179(1): 11-44. https://doi.org/10.1007/s00024-021-02917-6
闵子群, 吴戈, 江在雄,等, 1995. 中国历史地震目录(公元前23世纪—公元1911年).北京: 地震出版社.
汪素云, 吴戈, 时振梁,等, 1999. 中国近代地震目录(公元1912—1990).北京: 中国科学技术出版社.
徐锡伟, 闻学泽, 郑荣章,等, 2003. 川滇地区活动块体最新构造变动样式及其动力来源. 中国科学(D辑), 46:210-226.
易桂喜, 龙锋, 闻学泽, 等, 2015. 2014年11月22日康定M6.3级地震序列发震构造分析. 地球物理学报, 58(4):1205-1219.

感谢两位审稿专家提出的建设性意见.附件见本刊官网:www.earth-science.net.

Comments

PDF(4722 KB)

Accesses

Citation

Detail

Sections
Recommended

/