Geochronology, Geochemistry and Tectonic Implications of Triassic A-Type Granites in Pingtian Area, Northern Guangdong

Xi Zhen, Liu Qingquan, Wu Dehua, Chen Zhaohua

PDF(8600 KB)
PDF(8600 KB)
Earth Science ›› 2024, Vol. 49 ›› Issue (07) : 2508-2525. DOI: 10.3799/dqkx.2023.010

Geochronology, Geochemistry and Tectonic Implications of Triassic A-Type Granites in Pingtian Area, Northern Guangdong

Author information +
History +

Abstract

Pingtian pluton is located in the central part of South China, providing an ideal window for understanding the Triassic tectonic-magmatic activities and the geodynamic setting in South China. Systematic whole-rock geochemistry, zircon U-Pb dating and zircon in situ Hf isotope studies were carried out, taking the Pingtian granite group as the object of study. The results show that the Pingtian pluton consists of coarse-grained porphyritic biotite granite, coarse-grained porphyritic potassium feldspar granite and medium-grained monzonite, with diagenetic ages ranging from 238 to 239 Ma, and it was formed in the Middle Triassic. Geochemical characteristics show that the rocks are enriched in light rare earth elements with obvious europium negative anomalies (δEu average=0.42). It is enriched in Zr, Hf, Y and Ce, and significantly depleted in Sr, P and Ti. It belongs to the metaluminous to weakly peraluminous alkaline granite type, and is A-type granite. The zircon ε Hf(t) values range from -37.7 to -5.0, and the t DM2 two-stage model ages range from 1 578 to 3 597 Ma. Combined with the whole-rock geochemical characteristics, it reveals that the magmas were derived mainly from the partial melting of felsic material in the crust under low-temperature and high-pressure environment, probably mixed with old crustal material, and experienced crystalline differentiation, and was formed in the post-collisional extensional background. Integrating the geochemical characteristics and spatial distribution of A-type granites and alkaline syenite in South China, we propose that the tectonic evolution of the Triassic was mainly controlled by the collisional interaction of the South China block with the Indochina block and the North China block, and that the tectonic setting changed at around 238 Ma, from a collisional extrusion environment in the Early Triassic to a transition to a post-collisional extensional environment in the Middle to Late Triassic.

Key words

A-type granite / Middle Triassic / post-collision extension / Pingtian / South China / geochemistry

Cite this article

Download Citations
Xi Zhen , Liu Qingquan , Wu Dehua , et al. Geochronology, Geochemistry and Tectonic Implications of Triassic A-Type Granites in Pingtian Area, Northern Guangdong. Earth Science. 2024, 49(07): 2508-2525 https://doi.org/10.3799/dqkx.2023.010

References

Anderson, J. L., 1983. Proterozoic Anorogenic Granite Plutonism of North America. Geological Society of America Memoirs, 161: 133-154. https://doi.org/10.1130/mem161-p133
Bai, D.Y., Wu, N.J., Zhong, X., et al., 2016. Geochronology, Petrogenesis and Tectonic Setting of Indosinian Wawutang Granites, Southwestern Hunan Province. Geotectonica et Metallogenia, 40(5): 1075-1091 (in Chinese with English abstract).
Batchelor, R. A., Bowden, P., 1985. Petrogenetic Interpretation of Granitoid Rock Series Using Multicationic Parameters. Chemical Geology, 48(1-4): 43-55. https://doi.org/10.1016/0009-2541(85)90034-8
Blichert-Toft, J., Chauvel, C., Albarède, F., 1997. Separation of Hf and Lu for High-Precision Isotope Analysis of Rock Samples by Magnetic Sector-Multiple Collector ICP-MS. Contributions to Mineralogy and Petrology, 127(3): 248-260. https://doi.org/10.1007/s004100050278
Boehnke, P., Watson, E. B., Trail, D., et al., 2013. Zircon Saturation Re-Revisited. Chemical Geology, 351: 324-334. https://doi.org/10.1016/j.chemgeo.2013.05.028
Bonin, B., 2007. A-Type Granites and Related Rocks: Evolution of a Concept, Problems and Prospects. Lithos, 97: 1-29.https://doi.org/10.1016/j.lithos.2006.12.007
Carter, A., Roques, D., Bristow, C., et al., 2001. Understanding Mesozoic Accretion in Southeast Asia: Significance of Triassic Thermotectonism (Indosinian Orogeny) in Vietnam. Geology, 29(3): 211-214. https://doi.org/10.1130/0091-7613(2001)0290211: umaisa>2.0.co;2
Chappell, B. W., Bryant, C. J., Wyborn, D., et al., 1998. High- and Low-Temperature I-Type Granites. Resource Geology, 48(4): 225-235. https://doi.org/10.1111/j.1751-3928.1998.tb00020.x
Chappell, B. W., White, A. J. R., Williams, I. S., et al., 2004. Low- and High-Temperature Granites. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 95(1-2): 125-140. https://doi.org/10.1017/s0263593300000973
Chen, C. H., Hsieh, P. S., Lee, C. Y., et al., 2011. Two Episodes of the Indosinian Thermal Event on the South China Block: Constraints from LA-ICPMS U-Pb Zircon and Electron Microprobe Monazite Ages of the Darongshan S-Type Granitic Suite. Gondwana Research, 19(4): 1008-1023. https://doi.org/10.1016/j.gr.2010.10.009
Chen, W. D., Zhang, W. L., Wang, R. C., et al., 2016. A Study on the Dushiling Tungsten-Copper Deposit in the Miao’ershan-Yuechengling Area, Northern Guangxi, China: Implications for Variations in the Mineralization of Multi-Aged Composite Granite Plutons. Science China Earth Sciences, 59(11): 2121-2141. https://doi.org/10.1007/s11430-015-5360-3
Dai, B. Z., Jiang, S. Y., Jiang, Y. H., et al., 2008. Geochronology, Geochemistry and Hf-Sr-Nd Isotopic Compositions of Huziyan Mafic Xenoliths, Southern Hunan Province, South China: Petrogenesis and Implications for Lower Crust Evolution. Lithos, 102(1): 65-87. https://doi.org/10.1016/j.lithos.2007.08.010
Eby, N. G., 1992. Chemical Subdivision of the A-Type Granitoids: Petrogenetic and Tectonic Implications. Geology, 20(7): 641-644. https://doi.org/10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2
Feng, M., Feng, Z. H., Kang, Z. Q., et al., 2019. Establishing an Indosinian Geochronological Framework for Episodic Granitic Emplacement and W-Sn-Nb-Ta Mineralization in Limu Mining District, South China. Ore Geology Reviews, 107: 1-13. https://doi.org/10.1016/j.oregeorev.2019.02.012
Frost, B. R., Barnes, C. G., Collins, W. J., et al., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11): 2033-2048. https://doi.org/10.1093/petrology/42.11.2033
Gao, P., Zheng, Y. F., Chen, Y. X., et al., 2018. Relict Zircon U-Pb Age and O Isotope Evidence for Reworking of Neoproterozoic Crustal Rocks in the Origin of Triassic S-Type Granites in South China. Lithos, 300-301: 261-277. https://doi.org/10.1016/j.lithos.2017.11.036
Gao, P., Zheng, Y. F., Zhao, Z. F., 2017. Triassic Granites in South China: A Geochemical Perspective on Their Characteristics, Petrogenesis, and Tectonic Significance. Earth-Science Reviews, 173: 266-294. https://doi.org/10.1016/j.earscirev.2017.07.016
Gao, W. L., Wang, Z. X., Song, W. J., et al., 2014a. Zircon U-Pb Geochronology, Geochemistry and Tectonic Implications of Triassic A-Type Granites from Southeastern Zhejiang, South China. Journal of Asian Earth Sciences, 96(15): 255-268. https://doi.org/10.1016/j.jseaes.2014.09.024
Gao, P., Zhao, Z. F., Zheng, Y. F., 2014b. Petrogenesis of Triassic Granites from the Nanling Range in South China: Implications for Geochemical Diversity in Granites. Lithos, 210-211: 40-56. https://doi.org/10.1016/j.lithos.2014.09.027
Griffin, W. L., Pearson, N. J., Belousova, E., et al., 2000. The Hf Isotope Composition of Cratonic Mantle: LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133-147. https://doi.org/10.1016/s0016-7037(99)00343-9
Guo, A.M., Chen, B.H., Chen, J.F., et al., 2017. SHRIMP Zircon U-Pb Age of Tashan Granite in Hunan Province and Its Geological Significance. Geological Bulletin of China, 36(S1): 459-465 ( in Chinese).
Guo, C.L., Zheng, J.H., Lou, F.S., et al., 2012. Petrography, Genetic Types and Geological Dynamical Settings of the Indosinian Granitoids in South China. Geotectonica et Metallogenia, 36(3): 457-472 (in Chinese with English abstract).
Guo, X.Z., Li, Y.Z., Jia, Q.Z., et al., 2018. Geochronology and Geochemistry of the Wulonggou Orefield Related Granites in Late Permian-Triassic East Kunlun: Implication for Metallogenic Tectonic. Acta Petrologica Sinica, 34(8): 2359-2379 (in Chinese with English abstract).
He, Z. Y., Xu, X. S., Niu, Y. L., 2010. Petrogenesis and Tectonic Significance of a Mesozoic Granite-Syenite-Gabbro Association from Inland South China. Lithos, 119(3-4): 621-641. https://doi.org/10.1016/j.lithos.2010.08.016
Huang, H. Q., Li, X. H., Li, W. X., et al., 2011. Formation of High δ18O Fayalite-Bearing A-Type Granite by High-Temperature Melting of Granulitic Metasedimentary Rocks, Southern China. Geology, 39(10): 903-906. https://doi.org/10.1130/g32080.1
Lepvrier, C., Maluski, H., Van Tich, V., et al., 2004. The Early Triassic Indosinian Orogeny in Vietnam (Truong Son Belt and Kontum Massif); Implications for the Geodynamic Evolution of Indochina. Tectonophysics, 393(1-4): 87-118. https://doi.org/10.1016/j.tecto.2004.07.030
Li, G.L., Hua, R.M., Hu, D.Q., et al., 2010. Petrogenesis of Shilei Quartz Diorite in Southern Jiangxi: Constraints from Petrochemistry, Trace Elements of Accessory Minerals, Zircon U-Pb Dating, and Sr-Nd-Hf Isotopes. Acta Petrologica Sinica, 26(3): 903-918 (in Chinese with English abstract).
Li, W.Y., Ma, C.Q., Liu, Y.Y., et al., 2012. Discovery of Indosinian Aluminous A-Type Granite in Zhejiang Province and Its Geological Significance. Scientia Sinica Terrae, 42(2): 164-177 (in Chinese).
Li, X., Wang, L.Z., Tu, B., et al., 2021. Zircon Geochronology, Geochemistry and Petrogenesis of the Taibao Pluton in Northwest Guangdong Province. Earth Science, 46(4): 1199-1216 (in Chinese with English abstract).
Li, X. H., Li, Z. X., Li, W. X., et al., 2006. Initiation of the Indosinian Orogeny in South China: Evidence for a Permian Magmatic Arc on Hainan Island. The Journal of Geology, 114(3): 341-353. https://doi.org/10.1086/501222
Li, Z. X., Li, X. H., 2007. Formation of the 1 300-km-Wide Intracontinental Orogen and Postorogenic Magmatic Province in Mesozoic South China: A Flat-Slab Subduction Model. Geology, 35(2): 179-182. https://doi.org/10.1130/G23193A.1
Liu, K., Mao, J.R., Zhao, X.L., et al., 2014. Geological and Geochemical Characteristics and Genetic Significance of the Ziyunshan Pluton in Hunan Province. Acta Geologica Sinica, 88(2): 208-227 (in Chinese with English abstract).
Lu, Y.L., Peng, J.T., Yang, J.H., et al., 2017. Petrogenesis of the Ziyunshan Pluton in Central Hunan, South China: Constraints from Zircon U-Pb Dating, Element Geochemistry and Hf-O Isotopes. Acta Petrologica Sinica, 33(6): 1705-1728 (in Chinese with English abstract).
Ma, L.Y., Liu, S.S., Fu, J.M., et al., 2016. Petrogenesis of the Tashan-Yangmingshan Granitic Batholiths: Constraint from Zircon U-Pb Age, Geochemistry and Sr-Nd Isotopes. Acta Geologica Sinica, 90(2): 284-303 (in Chinese with English abstract).
Mao, J. R., Ye, H. M., Liu, K., et al., 2013. The Indosinian Collision-Extension Event between the South China Block and the Palaeo-Pacific Plate: Evidence from Indosinian Alkaline Granitic Rocks in Dashuang, Eastern Zhejiang, South China. Lithos, 172-173: 81-97. https://doi.org/10.1016/j.lithos.2013.04.004
Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3-4): 215-224. https://doi.org/10.1016/0012-8252(94)90029-9
Mushkin, A., Navon, O., Halicz, L., et al., 2003. The Petrogenesis of A-Type Magmas from the Amram Massif, Southern Israel. Journal of Petrology, 44(5): 815-832. https://doi.org/10.1093/petrology/44.5.815
Nong, J.N., Sun, M.H., Guo, S.Y., et al., 2022. The Discovery and Petrogenesis of Early Triassic Volcanic Vent in Southeastern Guangxi. Geological Review, 68(3): 1089-1105 (in Chinese with English abstract).
Papoutsa, A., Pe-Piper, G., Piper, D. J. W., 2016. Systematic Mineralogical Diversity in A-Type Granitic Intrusions: Control of Magmatic Source and Geological Processes. GSA Bulletin, 128(3-4): 487-501. https://doi.org/10.1130/b31245.1
Patiño Douce, A. E., 1997. Generation of Metaluminous A-Type Granites by Low-Pressure Melting of Calc-Alkaline Granitoids. Geology, 25(8): 743-746. https://doi.org/10.1130/0091-7613(1997)0250743: gomatg>2.3.co;2
Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. https://doi.org/10.1007/BF00384745
Qin, H.F., Huang, X.Q., Jiang, J., et al., 2018. Genesis of Indosinian Granites in Maoershan, Northern Guangxi: Evidence from Petrology, Geochemistry, Zircon U-Pb Ages and Hf Isotope. Journal of Guilin University of Technology, 38(4): 597-613 (in Chinese with English abstract).
Rapp, R. P., Watson, E. B., 1995. Dehydration Melting of Metabasalt at 8-32 kbar: Implications for Continental Growth and Crust-Mantle Recycling. Journal of Petrology, 36(4): 891-931. https://doi.org/10.1093/petrology/36.4.891
Ren, H.T., Wu, J.Q., Ye, X.F., et al., 2013. Zircon U-Pb Age and Geochemical Characteristics of Peraluminous Fine-Grained Granite in Western Part of the Fucheng Pluton, Jiangxi Province. Geological Journal of China Universities, 19(2): 327-345 (in Chinese with English abstract).
Rickwood, P. C., 1989. Boundary Lines within Petrologic Diagrams Which Use Oxides of Major and Minor Elements. Lithos, 22(4): 247-263. https://doi.org/10.1016/0024-4937(89)90028-5
Rudnick, R. L., Gao, S., 2014. Composition of the Continental Crust. Treatise on Geochemistry, 4: 1-51. https://doi.org/10.1016/B978-0-08-095975-7.00301-6
Shu, X.J., 2014. Petrogenesis and Crustal Evolution of the Mesozoic Granites from Nanling, South China (Dissertation). Nanjing University, Nanjing (in Chinese with English abstract).
Sláma, J., Košler, J., Condon, D.J., et al., 2008. Plešovice Zircon—A New Natural Reference Material for U-Pb and Hf Isotopic Microanalysis. Chemical Geology, 249:1-35.https://doi.org/10.1016/j.chemgeo.2007.11.005
Söderlund, U., Patchett, P. J., Vervoort, J. D., et al., 2004. The 176Lu Decay Constant Determined by Lu-Hf and U-Pb Isotope Systematics of Precambrian Mafic Intrusions. Earth and Planetary Science Letters, 219(3-4): 311-324. https://doi.org/10.1016/s0012-821x(04)00012-3
Sun, Y., Ma, C. Q., Liu, Y. Y., et al., 2011. Geochronological and Geochemical Constraints on the Petrogenesis of Late Triassic Aluminous A-Type Granites in Southeast China. Journal of Asian Earth Sciences, 42(6): 1117-1131. https://doi.org/10.1016/j.jseaes.2011.06.007
Sun, L.Q., 2018. Petrogenesis of the Mesozoic Granites in the Zhuguangshan Area in the Nanling Region and Their Implications for the Uranium Mineralization (Dissertation). Nanjing University, Nanjing (in Chinese with English abstract).
Sun, L.Q., Ling, H.F., Shen, W.Z., et al., 2010. Geochronology of Youshan and Pingtian Granites in Nanling Range and Its Geological Implication. Geological Journal of China Universities, 16(2): 186-197 (in Chinese with English abstract).
Sun, L. Q., Ling, H. F., Shen, W. Z., et al., 2017. Petrogenesis of Two Triassic A-Type Intrusions in the Interior of South China and Their Implications for Tectonic Transition. Lithos, 284-285: 642-653. https://doi.org/10.1016/j.lithos.2017.05.006
Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society of London Special Publications, 42(1): 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
Sun, T., 2006. A New Map Showing the Distribution of Granites in South China and Its Explanatory Notes. Geological Bulletin of China, 25(3): 332-335 (in Chinese with English abstract).
Sylvester, P. J., 1998. Post-Collisional Strongly Peraluminous Granites. Lithos, 45(1-4): 29-44. https://doi.org/10.1016/s0024-4937(98)00024-3
Wang, C., Peng, J.T., Xu, J.B., et al., 2021. Petrogenesis and Metallogenic Effect of the Baimashan Granitic Complex in Central Hunan, South China. Acta Petrologica Sinica, 37(3): 805-829 (in Chinese with English abstract).
Wang, L.J., Yu, J.H., Xu, X.S., et al., 2007. Formation Age and Origin of the Gutian-Xiaotao Granitic Complex in the Southweslern Fujian Province, China. Acta Petrologica Sinica, 23(6): 1470-1484 (in Chinese with English abstract).
Wang, Q., Li, J. W., Jian, P., et al., 2005. Alkaline Syenites in Eastern Cathaysia (South China): Link to Permian-Triassic Transtension. Earth and Planetary Science Letters, 230(3-4): 339-354. https://doi.org/10.1016/j.epsl.2004.11.023
Wang, W.B., Li, J.H., Xin, Y.J., et al., 2018. Zircon LA-ICP-MS U-Pb Dating and Geochemical Analysis of the Darongshan-Shiwandashan Granitoids in Southwestern South China and Their Geological Implications. Acta Geoscientica Sinica, 39(2): 179-194 (in Chinese with English abstract).
Wang, Y.B., Wang, D.H., Han, J., et al., 2010. U-Pb Dating and Hf Isotopic Characteristics of Zircons and Re-Os Dating of Molybdenite from Gao’aobei Tungsten-Molybdenum Deposit, Southern Hunan Province. Geological Review, 56(6): 820-830 (in Chinese with English abstract).
Wang, Y. J., Fan, W. M., Zhang, G. W., et al., 2013. Phanerozoic Tectonics of the South China Block: Key Observations and Controversies. Gondwana Research, 23(4): 1273-1305. https://doi.org/10.1016/j.gr.2012.02.019
Watson, E. B., Wark, D. A., Thomas, J. B., 2006. Crystallization Thermometers for Zircon and Rutile. Contributions to Mineralogy and Petrology, 151(4): 413-433. https://doi.org/10.1007/s00410-006-0068-5
Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/BF00402202
Xia, Y., Xu, X. S., 2020. The Epilogue of Paleo-Tethyan Tectonics in the South China Block: Insights from the Triassic Aluminous A-Type Granitic and Bimodal Magmatism. Journal of Asian Earth Sciences, 190: 104129. https://doi.org/10.1016/j.jseaes.2019.104129
Xiang, W.S., Jiang, J.S., Lei, Y.J., et al., 2021. Petrogenesis of A-Type Granite and Geological Significance of Bure Area, Western Ethiopia. Earth Science, 46(7): 2299-2310 (in Chinese with English abstract).
Xu, H. J., Ma, C. Q., Zhao, J. H., et al., 2014a. Petrogenesis of Dashenshan I-Type Granodiorite: Implications for Triassic Crust-Mantle Interaction, South China. International Geology Review, 56(3): 332-350. https://doi.org/10.1080/00206814.2013.857457
Xu, H. J., Ma, C. Q., Zhao, J. H., et al., 2014b. Magma Mixing Generated Triassic I-Type Granites in South China. The Journal of Geology, 122(3): 329-351. https://doi.org/10.1086/675667
Xu, X.B., Liang, C.H., Chen, J.J., et al., 2021. Fundamental Geological Features and Metallogenic Geological Backgrounds of Nanling Tectonic Belt. Earth Science, 46(4): 1133-1150 (in Chinese with English abstract).
Yang, J.B., Zhao, Z.D., Mo, X.X., et al., 2015. Petrogenesis and Implications for Alkali Olivine Basalts and Its Basic Xenoliths from Huziyan in Dao County, Hunan Province. Acta Petrologica Sinica, 31(5): 1421-1432 (in Chinese with English abstract).
Yang, J.H., Du, Y.S., Yu, X., et al., 2017. Early Permian Volcanic Fragment-Bearing Sandstones in Babu of Southeast Yunnan: Indicative of Paleo-Tethyan Ocean Subduction. Earth Science, 42(1): 24-34 (in Chinese with English abstract).
Zhang, Q., Ran, H., Li, C.D., 2012. A-Type Granite: What is the Essence? Acta Petrologica et Mineralogica, 31(4): 621-626 (in Chinese with English abstract).
Zhang, Q., Wang, Y., Li, C.D., et al., 2006. Granite Classification on the Basis of Sr and Yb Contents and Its Implications. Acta Petrologica Sinica, 22(9): 2249-2269 (in Chinese with English abstract).
Zhao, K. D., Jiang, S. Y., Chen, W. F., et al., 2013. Zircon U-Pb Chronology and Elemental and Sr-Nd-Hf Isotope Geochemistry of Two Triassic A-Type Granites in South China: Implication for Petrogenesis and Indosinian Transtensional Tectonism. Lithos, 160-161: 292-306. https://doi.org/10.1016/j.lithos.2012.11.001
Zhao, Z., Wang, D.H., Chen, Z.Y., et al., 2014. Metallogenic Specialization of Rare Earth Mineralized Igneous Rocks in the Eastern Nanling Region. Geotectonica et Metallogenia, 38(2): 255-263 (in Chinese with English abstract).
Zhao, Z. X., Miao, B. H., Xu, Z. W., et al., 2017. Petrogenesis of Two Types of Late Triassic Granite from the Guandimiao Complex, Southern Hunan Province, China. Lithos, 282-283: 403-419. https://doi.org/10.1016/j.lithos.2017.02.021
Zhao, Z.X., Xu, Z.W., Miao, B.H., et al., 2015. Diagenetic Age and Material Source of the Guandimiao Granitic Batholith, Hengyang City, Hunan Province. Acta Geologica Sinica, 89(7): 1219-1230 (in Chinese with English abstract).
Zhong, Y.F., Ma, C.Q., She, Z.B., et al., 2011. U-Pb-Hf Isotope of Zircons, Geochemistry and Genesis of Mengshan Granitoids in Northwestern Jiangxi Province. Earth Science, 36(4): 703-720 (in Chinese with English abstract).
Zhou, X. M., Sun, T., Shen, W. Z., et al., 2006. Petrogenesis of Mesozoic Granitoids and Volcanic Rocks in South China: A Response to Tectonic Evolution. Episodes, 29(1): 26-33. https://doi.org/10.18814/epiiugs/2006/v29i1/004

野外工作得到了广东省有色地质勘查院肖元贵、刘建军等同志的大力支持;审稿过程中审稿专家和编辑部老师对文章提出宝贵的意见,在此一并表示感谢!

Comments

PDF(8600 KB)

Accesses

Citation

Detail

Sections
Recommended

/