3D Geological Modeling Method Based on Tectonic Restoration Theory

Hua Weihua, Zeng Xinling, Guo Danyang, Su Ziying, Zhang Wen, Duan Jianchao

PDF(1565 KB)
PDF(1565 KB)
Earth Science ›› 2024, Vol. 49 ›› Issue (04) : 1411-1420. DOI: 10.3799/dqkx.2022.452

3D Geological Modeling Method Based on Tectonic Restoration Theory

Author information +
History +

Abstract

In the three-dimensional geological modeling, many works focus on the simulation of the fault itself, ignoring the influence of the fault sequence on the stratum structure. However, it is very necessary and critical to consider the fault sequence and the deformation caused by it. To solve this problem, based on the theory of fault recovery and evolution influence region, in this paper it proposes a fault vector field modeling method for 3D geological modeling with complex fault network. First, the fault vector field displacement operator is used to recover the stratum and fault data within the influence region in the reverse order of fault structure evolution, and then the stratum and fault data affected by the fault are calculated step by step in the positive order of evolution to obtain a 3D geological model with complex fault network. Through modeling experiments and comparative experiments, it is verified that the method has a higher utilization rate of data and the ability to deal with fracture contact, and all displacements caused by fracture will be automatically calculated in the modeling process, which improves the rationality and efficiency of modeling. The model constructed by this method takes full account of the influence of the time sequence of fault structure, and is more able to solve the problem of fault network model construction with complex contact relationship than the general method.

Key words

3D modeling / complex fault network / restoration and evolution of fault structure / structural geology

Cite this article

Download Citations
Hua Weihua , Zeng Xinling , Guo Danyang , et al . 3D Geological Modeling Method Based on Tectonic Restoration Theory. Earth Science. 2024, 49(04): 1411-1420 https://doi.org/10.3799/dqkx.2022.452

References

Barnett, J., Mortimer, J., Rippon, J., et al., 1987. Displacement Geometry in the Volume Containing a Single Normal Fault. AAPG Bulletin, 71(8):925-937. https://doi.org/10.1306/948878ed-1704-11d7-8645000102c1865d
Bouziat, A., 2012. Vector Field Based Fault Modelling and Stratigraphic Horizons Deformation. In: Proceedings of the 31st Gocad Meeting, San Antonio, Texas, USA. SPE. https://doi.org/10.2118/160905-stu
Carr, J. C., Beatson, R. K., Cherrie, J. B., et al., 2001. Reconstruction and Representation of 3D Objects with Radial Basis Functions. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques. ACM, 67-76. https://doi.org/10.1145/383259.383266
Caumon, G., Collon-Drouaillet, P., Le Carlier de Veslud, C., et al., 2009. Surface-Based 3D Modeling of Geological Structures. Mathematical Geosciences, 41(8): 927-945. https://doi.org/10.1007/s11004-009-9244-2
Cheng, C.L., 2022. Newton Iteration Method and Its Implementation by MATLAB. China BroadBand, (3): 40-42 (in Chinese).
Cowan, J., Beatson, R., Ross, H.J., et al., 2003. Practical Implicit Geological Modelling. AusIMM Publication Series, Bendigo, Victoria, Australia, 89-99.
Fang, Y., Li, M., Hu, Y.J., 2003. Three-Dimensional Visualization of Stratified Geological Objects. Journal of Jiaozuo Institute of Technology, 22(6): 441-444 (in Chinese with English abstract).
Godefroy, G., Caumon, G., Ford, M., et al., 2018. A Parametric Fault Displacement Model to Introduce Kinematic Control into Modeling Faults from Sparse Data. Interpretation, 6(2): B1-B13. https://doi.org/10.1190/INT-2017-0059.1
Hillier, M. J., Schetselaar, E. M., de Kemp, E. A., et al., 2014. Three-Dimensional Modelling of Geological Surfaces Using Generalized Interpolation with Radial Basis Functions. Mathematical Geosciences, 46(8): 931-953. https://doi.org/10.1007/s11004-014-9540-3
Hollund, K., Mostad, P., Nielsen, B.F., et al., 2002. Havana; A Fault Modeling Tool. In: Koestler, A.G., Hunsdale, R., eds., Hydrocarbon Seal Quantification. Norwegian Petroleum Society Conference, Norway, 157-171. https://doi.org/10.1016/S0928-8937(02)80013-3
Hua, W.H., Guo, D.Y., Liu, X.G., et al., 2023. Unified Correction and Connection Method of Stratigraphic Sequence with Complex Inversion. Earth Science, 48(4): 1532-1542 (in Chinese with English abstract).
Li, C.L., Zhang, H., Zhu, L.F., 2013. Algorithm for True-3D Modeling of Geological Body with Single-Fault. Computer Engineering and Design, 34(10): 3590-3594 (in Chinese with English abstract).
Li, P.J., 2000. Three-Dimensional Simulation and Visualization of Layered Geological Bodies. Earth Science Frontiers, 7(S2): 271-277(in Chinese with English abstract).
Li, Z.L., Pan, M., Yang, Y., et al., 2015. Research and Application of the Three-Dimensional Complex Fault Network Modeling. Acta Scientiarum Naturalium Universitatis Pekinensis, 51(1): 79-85 (in Chinese with English abstract).
Maerten, L., Willemse, E. J. M., Pollard, D. D., et al., 1999. Slip Distributions on Intersecting Normal Faults. Journal of Structural Geology, 21(3): 259-272. https://doi.org/10.1016/s0191-8141(98)00122-9
Sha, H., 2016. Fault 3D Geological Modeling Based on Integral Method. Coal and Chemical Industry, 39(8): 24-26 (in Chinese with English abstract).
Tai, W.X., Zhou, Q., Yang, C.F., et al., 2023.3D Geological Visualization Modeling and Its Application in Zhexiang Gold Deposit, Southwest Guizhou Province. Earth Science, 48(11): 4017-4033 (in Chinese with English abstract).
Thore, P., Shtuka, A., Lecour, M., et al., 2002. Structural Uncertainties: Determination, Management, and Applications. Geophysics, 67(3): 840-852. https://doi.org/10.1190/1.1484528
Walsh, J. J., Watterson, J., 1987. Distributions of Cumulative Displacement and Seismic Slip on a Single Normal Fault Surface. Journal of Structural Geology, 9(8): 1039-1046. https://doi.org/10.1016/0191-8141(87)90012-5
Wang, Z., Liu, Z., An, C.R., et al., 2015.3D Fault Modeling Method Based on Profile. Journal of Xi’an Shiyou University (Natural Science Edition), 30(6): 50-54, 61, 9(in Chinese with English abstract).
Wellmann, F., Caumon, G., 2018.3-D Structural Geological Models: Concepts, Methods, and Uncertainties. Advances in Geophysics. Elsevier,Amsterdam, 1-121. https://doi.org/10.1016/bs.agph.2018.09.001
Wu, Q., Xu, H., 2005. Technique for 3D Fault Simulation in Virtual Mine System. Journal of Liaoning Technical University, 24(3): 316-319 (in Chinese with English abstract).
Xiao, Y., Guo, T.T., Xu, S.G., et al., 2020. Three-Dimensional Geological Modeling of Faults Based on AHGW. China Water Transport, 20(6): 175-177 (in Chinese with English abstract).
Zhang, J.Y., Cui, Z.D., Han, W.G., et al., 2021. Research Progress of 3D Fault Modeling Technology Considering the Process of Geological Evolution. Xinjiang Geology, 39(2): 336-339 (in Chinese with English abstract).
Zhu, L.F., Pan, X., 2008. Study on Computer Modeling of Geological Faults in 3D. Rock and Soil Mechanics, 29(1): 274-278 (in Chinese with English abstract).
成春蕾, 2022. 牛顿迭代法及其MATLAB实现. 中国宽带, (3): 40-42.
方燕, 李梅, 胡友健, 2003. 层状地质体的三维可视化研究. 焦作工学院学报(自然科学版), 22(6): 441-444.
花卫华, 郭丹阳, 刘修国, 等, 2023. 含复杂倒转的地层层序统一修正与连接方法. 地球科学, 48(4): 1532-1542.
李昌领, 张虹, 朱良峰, 2013. 单断层地质体真三维建模算法. 计算机工程与设计, 34(10): 3590-3594.
李培军, 2000. 层状地质体的三维模拟与可视化. 地学前缘, 7(增刊2): 271-277.
李兆亮, 潘懋, 杨洋, 等, 2015. 三维复杂断层网建模方法及应用. 北京大学学报(自然科学版), 51(1): 79-85.
沙浩, 2016. 基于整体法的断层三维地质建模. 煤炭与化工, 39(8): 24-26.
邰文星, 周琦, 杨成富, 等, 2023. 黔西南者相金矿床三维地质可视化建模及应用. 地球科学, 48(11): 4017-4033.
王诏, 刘展, 安聪荣, 等, 2015. 基于剖面的三维断层建模方法. 西安石油大学学报(自然科学版), 30(6): 50-54, 61, 9.
武强, 徐华, 2005. 虚拟矿山系统中三维断层模拟技术. 辽宁工程技术大学学报, 24(3): 316-319.
肖义, 郭婷婷, 徐世光, 等, 2020. 基于AHGW的含断层三维地质建模. 中国水运(下半月), 20(6): 175-177.
张建勇, 崔振东, 韩伟歌, 等, 2021. 考虑地质演化过程的断层三维建模技术研究进展. 新疆地质, 39(2): 336-339.
朱良峰, 潘信, 2008. 地质断层三维构模技术研究. 岩土力学, 29(1): 274-278.

本文提出的断裂矢量场建模方法依托于国家重点研发计划项目子课题“区域深部含矿地质体建模与可视化”(2019YFC0605102)和国家自然科学基金面上项目“多元数据联合影响下复杂地质模型快速构建方法”(41972307).前者旨在研究稀疏数据条件下,深部含矿地质体的三维地质建模方法与面向专业的三维地质构造模型与属性模型的三维可视化技术.后者旨在研究地质领域多元化地质数据的联合影响理论方法,确定结构联合影响函数的数学条件,实现复杂地质模型的自动构建方法,充分约束地质知识、地质结构、地质原产地、地球物理等信息.感谢相关项目在理论和技术方面的支持.

Comments

PDF(1565 KB)

Accesses

Citation

Detail

Sections
Recommended

/